
~LL

0) NAVAL POSTGRADUATE SCHOOL
k, Monterey, California
0)

4_11
IT

THESIS SEPo01198

DISTRIBUTED COMPUTER COMMUNICATIONS '

in SUPPORT of %

REAL-TIME VISUAL SIMULATIONS .7

b by

Theodore H. Barrow

June 1988,.

Thesis Advisor: Michael J. Zyda

Approved for public release; distribution is unlimited

88 9 18 027

UNCLASSIFIED
SECURITY CLASSIFICATION OF THiS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSiFCATION lb RESTRICTIVE MARKINGS

Unclassified
2a SECURITY CLASS,F CAT ON ALTHORITV 3 DISTRIBUTION ,'AVAILABILITY OF REPORT

2b JEC SS.FiCATON DOVVNGRA NG SC:-EDULE Approved for public release;
Distribution is unlimited.

4 -ERFORMING ORGANiZA7!ON REPORT %UNIBERkS) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION
(If applicable)

Naval Postgraduate School Code 52 Naval Postgraduate School

6c. ADDRESS (City, State, and ZIPCode) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, California 93943-5000 Monterey, California 93943-5000

8a. NAME OF FUNDING.SPONSORING C! OFFCE SYMCOL 9 PROCUREMENT ijoiSTRUMENT ;DENT'F;CAT'0N NUMBER
ORGANZATION (If applicable)

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO ACCESSION NO

1. TITLE (Include Security Classification)

DISTRIBUTED COMPUTER COMMUNICATIONS in SUPPORT of REAL-TIME VISUAL SIMULATIONS

12. PERSONAL AUTHOR(S)

Theodore H. Barrow
13a- TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT

Master's Thesis FROM TO _1988 June 179
16 SUPPLEMENTARY NOTATION

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Dist-ributed LComputing; Computer Communications; Visual
Simulation; Transmission Control Protocol (TCP); Ethernet;-
-Computer Network, i) !

9 ABSTRACT (Continue on reverse if necessary and identify by block number)

,_-- Complex visual simulations can strain the capability of a single workstation. A mix
of different workstations is often mo-r, economical than the use of a large processor for
such simulations. Methods of communicating between such workstations are needed that
allow the developer to spend effort on the' imulation and not on communications. Simple
protocols are developed to support both broadcast and direct-connect communications
between workstations using TCP/IP on an Etherbet. Comparisons are made between broadcast
and direct connect protocols.]y,, ' -

!%

20O),SRBUTON
,
AVAILABi , .Y 01' ABSTRACT 21 ABSTRACT SECURITY CLASSIFCATION

l.jCZASSIFED,;JNLMITED E SAME AS RPT [DTIC USERS Unclassified
22,a ,.t.' UiiUr E ljuLN fILO.UAL 22b TELEPHONE (Include AreaCode) a2c OFFICE SYMBOL

Professor Michael J. Zyda (408) 646-2305 Code 52Zk

DD FORM 1473, 84 MAP 83 APR ed,tion may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete 0 U G W O 198 6- 6.

i UNCLASSIFIED

~- %]*~ - - ,- % *

Approved for public release; distribution is unlimited. I.

DISTRIBUTED COMPUTER COMMUNICATIONSb
in SUPPORT of

REAL-TIME VISUAL SIMULATIONS
by

Theodore H. Barrow
Major, United States Marine Corps
B.S.ChE, Stanford University, 1977

Submitted in partial fulfillment of the S

requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

June 1988

Author: _____

Theodore H. Barrow

Approved by:
Michael . y , " i Aviso

(hn M. hak, Second Reader

Robert B .McGhee, Acting Chairman,
D p ent of Computer Science

, /James M. Frei ~gen,

Actin/,D6ean of Information d Policy Sciences

ii

- 4 VV -. .V

ABSTRACT

Complex visual simulations can strain the capability of a single workstation. A mix

of different workstations is often more economical than the use of a large processor for

such simulations. Methods of communicating between such workstations are needed that

allow the developer to spend effort on the simulation and not on communications.

Simple protocols are developed to support both broadcast and direct-connect

communications between workstations using TCP/IP on an Ethernet. Comparisons are

made between broadcast and direct connect protocols.

Accession For W

l~is GRA&I

DTIC TAB
Unannounced .
just if eti en --

a.-
- -

al

justification

By___
! Avai'l

-and/or

" '

Distribution!___

Dist Special

.

~,"C

i'i'

TABLE OF CONTENTS

I. INTRODUCTION I......................... I

A . PROBLEM .. I

1. Approach .. 1
2. D esign Criteria .. 2

B. BACKGROUND ... 3
1. Visual Simulation ... 3

a. Vision and Information Presentation 3
b. Definition... 4
C. Examples.. 4

2. Computer System Architecture... 50
3. Communication .. 6

C. ORGANIZATION.. 7
11. EXISTING SYSTEM .. 8

A. INTRODUCTION .. 8
B. HARDWARE .. 8

1. Network... 8
2. Workstations... 10

a. Silicon Graphics, Inc. IRIS ... 10
b. isi Ai.. 10
C. Sun-3/50 .. I11O
d. Symbolics 36xx .. 11I
e. Texas Instruments Explorer.. 12

3. Digital Equipment Corporation VAX 11(785 12
4. ISIV minicomputers... 13

C. SOFTWARE... 14
1. UNIX Machines.. 14

a. 4.3BSD.. 14
b. SystemV ... 140

2. Lisp Machines ... 14
a. Genera .. 14
b. Explorer .. 14

D. SUMMARY.. 15
1Il1. PROTOCOLS.. 16

A. INTRODUCTION.. 16

R. DIRECT CONNECTION .. 16 _Y
I. High-Level Protocol .. 16

iv

VI

2. Supporting Protocols ... 18
C. BROADCAST .. 19

1. High-Level Protocol .. 19
2. Supporting Protocols ... 19

D. SUM M ARY .. 20
IV . IM PLEM ENTATIONS .. 21

A . INTRODUCTION ... 21
B. SYSTEM V UNIX ... 21

1. Silicon Graphics, Inc. IRIS 2400 .. 21

a. Sockets .. 21

b. Sem aphores ... 23
c. Shared M em ory ... 24

d. Buffering ... 30
(1) Direct Connect .. 30
(2) Broadcast .. 32

2. Silicon Graphics, Inc. IRIS 3120 .. 33
3. Silicon Graphics, Inc. IRIS 4D .. 33

C. 4.3BSD UNIX .. 34
D . LISP M ACHINES .. 35

1. Texas Instrum ents Explorer I .. 35
2. Sym bolics 36xx .. 37 _

E. SUM MARY ... 39
V . USE BY APPLICATIONS ... 40

A . INTRODUCTION .. 40
B. DIRECT CONNECT .. 40

1. UNIX-Based M achines .. 40
a. Application Setup .. 41
b. Coding Practices .. 43

(1) Connection .. 43
(2) Program Use ... 45
(3) Disconnection .. 49

2. Lisp M achines ... 49
a. Connection ... 49
b. Program Use .. 52
c. Disconnection ... 52

C. BROADCAST .. 52

1. Similarities With Direct Connect Protocol Use 52
2. Differences W ith Direct Connect Protocol Use 54

a. Application Setup .. 54 S

V

b. Coding Practices 55
D . SUM M ARY .. 55

VI. PERFORM ANCE .. 57
A . INTRODUCTION .. 57
B . D ATA COLLECTION ... 57

C . DISCUSSION .. 59
D . SUMM ARY .. 60

VII. CONCLUSIONS AND RECOMMENDATIONS ... 62

A . LIM ITATIONS .. 62
B . FUTURE RESEARCH AREAS 63

C . SUMM ARY AND CONCLUSION .. 63
APPENDIX A - IRIS MODULE DESCRIPTIONS ... 64

1. io-single .. 64
a. Calling Protocols .. . 64

i. num ber received ... 64

ii.rc a.............".... 64
iii. read characters ... 64
iv. readfloat 64
v. read -integer .. 64
vi. receivedtype .. 65
vii. write character .. . 65
viii. writecharacters ... 65

ix. write.float ... 65
x. write-integer .. 65

b. Code and Description ... 66
2. m path.c 81

a. Calling Protocols .. . 81
i. deletemachinepath 81

ii. machinepath .. 81
iii. dynam icmachinepath .. 81

iv. dynam icm achinepaths 82
b. Code and Description ... 82

3. netV.c .. 94
a. Calling Protocols .. . 94
b. Code and Description ... 94

4. receive .. . 103
a. Calling Protocols .. 103
b. Code and Description .. 103

5. sem aphore.c ... 107

v

*%** %.*~*444 ~ %~~ % ~ ~~ - -' -V ~ ~ 4 4

a. Calling Protocols ... 107
b. Code and Description 107

6. send.c .. 109 •

a. Calling Protocols ... 109
b. Code and Description .. 109

7. shared.h ... 113

a. Calling Protocols ... 113

b. Code and Description .. 114

8. shareseg.c ... 116
a. Calling Protocols ... 116
b. Code and Description .. 116

9. supportc ... 121
a. Calling Protocols ... 121

i. receiverhasdata ... 121

ii. sender is-free .. 121
b. Code and Description .. 122

APPENDIX B - TI EXPLORER MODULE DESCRIPTIONS 133
1. Calling Protocols .. 133

a. iris ... 133

b. start-iris ... 133

c. get-iris ... 133 0

d. put-iris ... 133
e. stop-iris ... 133
f. reuse-iris ... 133 "

2. Code and Description .. 134

APPENDIX C - SYMBOLICS MODULE DESCRIPTIONS .. 137

1. Calling Protocols ... 137
a. select-host ... 137

b. start-iris ... 137
c. get-iris ... 137 S

d. put-iris ... 137
e. stop-iris ... 137

f. reuse-iris ... 137
2. Code and Description .. 138

APPEN DIX D - TEST AND UTILITY PROGRAM S ... 141
1. gprog.c .. 141 %

a. Calling Protocols ... 141

b. Code and Description 141

2. gprog2.c .. 145

vii

N

a. Calling Protocols .. 145
b. Code and Description .. 145

3. prog.c .. 149

a. Caling Protocols ... 149

b. Code and Description .. 149
4. prog2.c .. 153

a. Calling Protocols ... 153

b. Code and Description .. 153
5. rm share.c ... 157

a. Calling Protocols .. 157

b. Code and Description .. 157
6. testshare .. 160

a. Calling Protocols ... 160
b. Code and Description .. 160

LIST O F REFEREN CES ... 163
INITIA L DISTRIBUTION LIST ... 165

,7'

S

viii

"

vi .0 .W.
P.. I J. A _.-A I

LIST OF TABLES

Table 2.1 IRIS WORKSTATION CONFIGURATIONS .. 10
Table 2.2 ISI AI WORKSTATION CONFIGURATIONS 11
Table 2.3 SUN WORKSTATION CONFIGURATIONS ... 11
Table 2.4 SYMBOLICS WORKSTATION CONFIGURATIONS 12
Table 2.5 EXPLORER WORKSTATION CONFIGURATIONS 12
Table 2.6 VAX CONFIGURATIONS .. 13
Table 2.7 ISIV DATABASE MACHINE CONFIGURATION 13
Table 3.1 DATA TYPES SUPPORTED .. 16
Table 4.1 SOCKET SUPPORT FUNCTIONS .. 23
Table 4.2 SEMAPHORE SUPPORT FUNCTIONS ... 24
Table 4.3 SHARED MEMORY MESSAGES ... 25
Table 4.4 SHARED MEMORY SUPPORT FUNCTIONS 26
Table 4.5 INTERNET ADDRESSING CLASSES .. 35
Table 5.1 SERVER ERROR RESPONSES .. 42 •
Table 5.2 CLIENT ERROR RESPONSES 44
Table 5.3 PATH CONNECTION .. 45
Table 5.4 COMMUNICATION FUNCTIONS 47
Table 5.5 MACHINEPATH PARAMETERS .. 56
Table 6.1 DIRECT CONNECT VERSUS BROADCAST STATISTICS 58
Table 6.2 APPLICATION NETWORK USE STATISTICS 58

ix:
,55" V.

LIST OF FIGURES %

Figure 2.1 Network Configuration ... 9
Figure 3.1 M essage Form at ... 17
Figure 4.1 Shared Memory Segment Data Assignment 25
Figure 4.2 UNIX M emory Allocation .. 27
Figure 4.3 IRIS 2400 Default Shared Memory Attachment 28
Figure 4.4 Three-Machine Interconnection ... 31
Figure 4.5 IRIS 4D Default Shared Memory Attachment 34
Figure 4.6 Encapsulation of IRIS Addresses .. 36
Figure 4.7 Lisp Port Acquisition .. 36
Figure 4.8 Opening a Lisp Client Cornection ... 37
Figure 4.9 Sending a M essage .. . 37

Figure 4. 10 Genera 6 and 7 defimethod .. 38
Figure 4.11 Generic Host Addressing .. 38
Figure 5.1 Sample Application make File 41 0

Figure 5.2 Normal Server Response .. 42
Figure 5.3 Norm al Client Response ... 43
Figure 5 4 Creation of Machine Structure ... 44
Figure 5.5 Server Creation ... 45 •
Figure 5.6 Command Line Direction for Connection .. 46

Figure 5.7 Synchronous Write / Asynchronous Read 48
Figure 5.8 Reciprocal Synchronous Read / Asynchronous Write 50
Figure 5.9 Connection Term ination ... 51

Figure 5.10 Loading Lisp Flavor .. . 51
Figure 5.11 Lisp Connection Message 51 -'.
Figure 5.12 Setting Port Numbers with defvar 51

F. .. . 5
Figure 5.13 Specifying Server in Lisp ... 51
Figure 5.14 Specifying Server by Name in Lisp .. 52
Figure 5.15 Application Communication in Lisp...................................... 53 -'

Figure 5.16 Termination of Communications in Lisp ... 54
Figure 5.17 Norm al Receiver Response .. 54
Figure 5.18 Norm al Broadcaster Response ... 54

x

7ft.-'-'

' ',.-', "',, ''7¢ .'7'£"",, '2- ,'2,.,' ',-', .- ?- ' ' . .. (.-,- .. ,. c., - - . . _, ,\ , -, - -,- ,-,- , ,- ,., .- ,. .- ,"0 ,

ACKNOWLEDGEMENTS

The author wishes to express his gratitude to a number of people who

supported this work. To my advisor, Dr. Michael Zyda, who provided me with the

initial idea and direction to start the project, and then stepped back, allowing me the

freedom to learn through exploration.

To the following people who provided programs and subroutines which were

incorporated into the project:

- Captain Andy Nelson, USMC, for the original versions of the irisflavor Lisp

routines.

- Dr. Sehung Kwak, for the conversion of the Explorer Lisp routines to run on the
Symbolics as streams.

- Mr. Al Wong, as the guiding light behind the original netV routines, as well as for
working broadcast routines, without which, the broadcast routines would never have
functioned.

- Dr. Michael Zyda, for the original versions of the mpath, netV, receive,
semaphore, send, shareseg, and support routines.

I would like to personally thank my wife, Clare, for the tremendous amount of

patience and support provided during all phases of the project. By expertl , running a

home with two children and shuffling her schedule around the times I absolutely had to

work, she provided me the time necessary to fully pursue this project and all others.

At

I,,

I. INTRODUCTION .

The Graphics and Video Laboratory of the Department of Computer Science at the

Naval Postgraduate School permits the researcher to create three-dimensional visual

simulations from digital terrain data [Ref. 11. Specialized graphics hardware allows the

display of such simulations in near-real time. The goal of a good part of the work in the

lab is the creation of a movie-like view of movement over and on terrain, with

increasingly complex movement animation models. Such projects have strained the

equipment's capabilities. One method of increasing available computing power is to

harness multiple heterogeneous machines together in some distributed computing

organization. It requires communication between the various machines, as well as

carefully matching each machine's capabilities to its assigned tasks.

A. PROBLEM

Rapid turnover of inexperienced students at the Naval Postgraduate School makes

the creation of complex simulations difficult to manage. The learning curve becomes

steeper as the lab's capabilities increase. One of the areas of difficulty has been inter-

computer communications. So much time has been spent on designing, coding, and

debugging communication software, little has been left for the original research. V'; set '

out to provide an easy-to-use, yet powerful, set of tools to aid in the development of

multi-computer projects. 0

1. Approach -U

A communication protocol can be optimized for large data transfers, or small

data transfers, or both. Efforts to optimize for both are both complex and difficult

[Refs. 2, 31. File transfer protocols such as FTP in the Defense Advanced Research i.

Project Agency (DARPA) Internet domain and uucp in the UNLX domain can be used for

6

1
',V

:"p

large data transfers. Their overhead' is high. This overhead cannot be tolerated in a !%

real-time problem . Our visual simiulation efforts rely on small data transfers to

communicate among machines. These small messages are typically commands and .

: ..

changing status indicators. Transferring the entire "world view" is only a reasonable task

during initialization or reset. Hence, we designed our protocols for small messages.
2. Design Criteria'.

".,

The design criteria for developed protocols were simplicity, ease of use, .,

portability, ane' efficiency. Rapid turnover of inexperienced students at the Naval _.

Postgraduate School makes simplicity of paramount importance. Inevitably, changes _

will be required and only a simple protocol is easily modified to take advantage of new

capabilities. Much the same argument, and generally good software design practice,

make ease of use only slightly less important. Almost all operating system-level aspects i

are hidden from the application. The number of other machines to be connected to, a use

of dynamic memory allocation, and the names of the other machines are the only
concerns for the application setting up a connection. The synchronization, or lack

thereof, in communication between machines is a design decision.

Portability dictated our use of TCP/IP, an integral part of the Defense Data

Network (DDN). Efficient use of processor power was considered more important than

efficient use of the network resources. The network is shared by the entire Computer

Science Department, but is not heavily loaded.nr

4,-

SThe cost of creating a file and then spawning a process to send it is high. On the receiving end, thee is the cost
of creating the file and then reading it. Even a zero-cost file traner protocol will require all this overhead.

SLarge data transfers in real-time systems, will not be possible until 100 bMyte/Sec networks are commonly

available. Dn

,%

.,.

2P

.

,,.e ,.¢, ',eo? T ostr of cre'_ .?.,gfie an tenswnna process to, s¢ ,.' ,.''¢''end t is .. %, hig. O the '.. reevn en,.',. ther is the Cost2 2"g ,, , . ~

B. BACKGROUND

1. Visual Simulation

a. Vision and Information Presentation

The eye has the largest bandwidth of any human sensory organ. Proper

use of this capability is a challenge to all scientists. Static graphs are used in most

disciplines to show the relationships between a limited number of variables. These two-

dimensional representations convey information more readily to human beings than

would a table of the underlying numbers. [Ref. 4: pp. 8-12]

Time, a common independent variable, is often one dimension on a graph.

The other dimension is a single dependent variable. To portray additional variables in

one presentation is a frequently occurring requirement. Various techniques such as

multiple colored lines, multiple icons, and perspective drawing are used. With each

technique, only a few additional variables are added before the graph becomes

incomprehensible.

Pictures, particularly those in color, have a dense information content.

Unless blind, we live in a world of pictures. Human beings can recognize many

differences between two similar pictures. One presentation portrays many different

variables. When a series of pictures are presented, the time variable is easily correlated

to the actual time of presentation. When a series of pictures is presented rapidly, the

experience approaches reality, partly explaining the success of moving pictures and

television.
". .

Animation creates visual images with an explicit time dimension, in

addition to two or three spatial dimensions. Using actual time to portray the

experimental time variable allows at least one more dependent variable on the display.

Images can be as simple as a changing graph, or as complex as a feature-length cartoon.

- ~ - c - - - p. .~ p. * *%'% *~p~*p~**.~ ***~ ~ ~ P'~*~p . . .

However, animation creates its effect with the playback of prerecorded scenes [Ref. 51. 'N'

It is not suitable for providing immediate feedback to a researcher.

b. Definition

Visual simulation is the creation, by computer, of a realistic, easily-

modified, moving image from the mathematical model of a phenomenon. Realism

implies high-resolution, color graphics. Movement implies adequate floating point

calculation capacity to recalculate the model and its graphical representation between

display refresh cycles. Easy modification implies a well-designed computer application.

Visual simulation allows a researcher to experiment easily with his

subject. Ideally, we display a realistic approximation of part of the world. The

experimenter then manipulates some part of this visual simulation and receives

immediate visual feedback. The rapidly refreshed display is one key to visual realism.

Such a display allows the direct manipulation of the visual simulation, making it easy

and intuitive to use [Ref. 6]. Ease of use allows the researcher to concentrate on the

research question, not the display methodology or the computer interface.

c. Examples

Recent visual simulation projects of the Graphics and Video Laboratory

include speed control of autonomous vehicles [Ref. 71, control of autonomous walking

machines [Ref. 81, rule-based control of autonomous underwater vehicles [Ref. 91,

interactive moving platforms [Ref. 101 and combat vehicle control [Ref. 11]. Each of

these projects exceeded the capacity of a single workstation. The speed control and

interactive moving platform projects, written entirely in C, used two Silicon Graphics, '5

Inc. IRIS workstations, allowing multiple simultaneous views. The other projects all

required a rule-based artificial intelligence component, best programmed in Lisp for ease

of modification. Running the Lisp subsystem on the IRIS workstation gave an S

unacceptably low refresh rate and correspondingly poor realism [Ref. 121. Placing the

4

t ' ,'' . ;.'/ . &.,'.' , ¢ 2 c ,;, ;% 4 - \ : ; q x : .; f . - . . : x .. ; . . V.

Lisp subsystem on another machine improved the refresh rate of the IRIS workstation

used for the graphics display.

2. Computer System Architecture

Computer systems can have a distributed or a non-distributed architecture.

Distributed architectures have only one characteristic in common, more than one

processor used to accomplish the task. Beyond this, many different approaches have

been tried [Ref. 13]. Identical processors give a homogeneous architecture. Different

processors give a heterogeneous architecture. Either distributed architecture may

incorporate shared memory or it may not. The separate processors can be closely or

loosely coupled. Communication between processors can be via shared memory,

common bus, or some form of communications network. Communication via some

combination of the above, such as a file server on a local area network, is also

common [Ref. 31. In the Computer Science Department at the Naval Postgraduate

School, a heterogeneous mix of stand-alone workstations, file server supported

workstation clusters, and minicomputers communicates via Ethernet.

Programming distributed architectures has inspired creativity. The

fundamental problems with distributed programming are the communications between

processes and the temporal interaction of the processes. Communicating sequential

processes [Ref. 141, distributed processes [Ref. 151, and remote procedure calls ,

[Refs. 2, 161 have all been proposed as primitives to hide message passing from the

programmer. Remote procedure calls [Refs. 2,31 and communicating sequential

processes [Ref. 17] have been implemented. However, even today, none of these is

generally available as a standard mechanism across varied architectures. We have

created simpler (but less general) communication routines for use among heterogeneous,

distributed, standalone computers.

5

_..

Complex projects can require the resources of more than one computer.

Graphics portions are best handled by the specialized hardware of a graphics workstation,

such as a Silicon Graphics, Inc. IRIS. Artificial intelligence portions are best handled by

a Lisp machine, such as a Symbolics* or a Texas Instruments Explorer**. Database

requests can be made to a machine with appropriate database software. A general

purpose computer, such as the Digital Equipment Corporation VAX**, can be used for

additional processing power, file storage, or other administrative support. Providing easy

access across such a mix of heterogeneous computers is a large task [Ref. 3]. The simple

mechanism described in this work gives communication access between cooperating

processes running on diverse hardware. It leaves temporal design to the application

developer, while providing the tools for synchronous and asynchronous interaction.

3. Communication

Communications between computers cooperating on a task can be one-to-one,

many-to-one, or one-to-many. It can be synchronous or asynchronous. Any, or all, of -

these can be required for one visual simulation.

One-to-one, or direct connect, communications puts the lowest load on the

network when there are few messages to be sent. A single virtual channel between the

two processes is required. Each communication between any two processes comprises

one message. All messages are known to be intended for the receiving process. These

messages can be sent synchronously or asynchronously. Direct connect communication I

requires one action by the sender and one by the receiver. With more processors,

* Symbolics is a trademark of Symbolics, Incorporated.

Explorer is a trademark of Texas Instrments Incorporated.

VAX is a registered trademark of Digital Equipment Corporation

6

potential virtual channels grow in number geometrically. For a fully connected network,

the virtual channels required can exceed capacity. The potential messages required also

grow geometrically in number.

One-to-many, or broadcast, communications puts the lowest load on tie

sending process. A message is sent to all other processes that are connected to it. It

requires one action by the sender, and two actions by each receiver (the reception and a

decision on whether the message is intended for that receiver). It also places one to n

messages on the network (depending on how the network and the broadcast protocols are

designed). It is primarily used in an asynchronous mode, although synchronous protocols

could be designed.

Many-to-one communications puts the highest load on the receiving process. It S

requires two actions by the receiver on every message that is sent by any connected

process. It is also a primarily asynchronous method. The receiver portion of a process

sees many-to-one whenever broadcast protocols are the only ones used in a visual

simulation.

C. ORGANIZATION

The previous sections of this chapter provide background on visual simulation,

distributed architectures, and communication paradigms. Chapter II describes the

hardware and software environment in the Computer Science Department at the Naval

Postgraduate School. The protocols developed are discussed in Chapter III. Chapter IV

describes the implementation of the protocols. Chapter V covers the use of these

protocols. The performance of the protocols is detailed in Chapter VI. Chapter VU

concludes with a discussion of limitations, future extensions and research topics, and

summarizes the research conducted. Listings of the program source code for each of the

hardware systems are included as Appendices.

7_ -

%Nb& -r(-V *..1 VOrwrW. LK - 3 r, k 7 -h X W I

IT. EXISTING SYSTEM

A. INTRODUCTION

The distributed architecture available in the Naval Postgraduate School Computer

Science Department Graphics and Video Laboratory is Ethernet-connected workstations

and minicomputers. The workstations include IRIS 2400, 3120, and 4D graphics,

Symbolics 36xx* and TI Explorer Lisp, ISI AI, and Sun-3s**. The minicomputers include

VAX 11/785 and an ISIV minicomputer complex providing database services. All

computers, except the Symbolics and TI, use some version of UNIX*** as the primary

operating system.

B. HARDWARE

1. Network

Ethernet connects all the computers in our lab. There is a backbone network

and subnetworks for certain groups of computers. Currently there are two subnetworks,

one for the ISIV minicomputers and one for the ISI Al workstations. Subnetworks are

planned for the IRIS workstations, the Sun Workstations"", and the Symbolics and TI

workstations. Figure 2.1 illustrates the network configuration.

1i

Symbolics 3600, Symbolics 3640. Symbolics 3650, and Symbolics 3675 are trademarks of Symbolics. Inc.

Sun-3 is a trademark of Sun Microsystems, Inc.

UNIX is a trademark of AT&T Bell Laboratories

.... Sun Workstation is a registered trademark of Sun Microsystems, Inc.

8

irisi !111s2 __________4

expi r exp2 F exp4
----------------------- --- ----

----- CHAOS -----

symi sym2 sy3sym4

- - --------------

! la L-sl suns1lOui-I

Sun File Server/Diskiess Workstations

suns2sus0sn l

-CS Backbone Ethernet

CS Subnetwork

Figure 2.1 Network Configuration

92

All computers support TCP/IP protocols. The Symbolics Lisp machines also

use the CHAOS protocol to provide file server s,:- ces from syml to the other Symbolics
6

machines. This logical local area network (LAN) uses the Ethernet backbone for its

messages. The Sun file servers also support their diskless nodes over the backbone

Ethernet.

2. Workstations

a. Silicon Graphics, Inc. IRIS

Table 2.1 shows the IRIS workstation configurations. All are connected

directly to the backbone Ethernet. The proprietary Geometry Engines in each of these

workstations allows three dimensional color graphics displays to be generated and

updated in real-time. The primary use of these machines is for color graphics.

b. ISI Al

Table 2.2 shows the ISI Al workstation configurations. Only ai8 is

connected directly to the backbone Ethernet. The other workstations are connected to it

in a subnetwork. These workstations are used primarily for artificial intelligence

projects. The ai8 machine provides, as well as a gateway to the backbone Ethernet, file "

server support for the other workstations. Their high resolution black on white monitors,

although bitmapped, have rudimentary graphics capabilities.

Table 2.1 IR IS WORKSTATION CONFIGURATIONS

Model Memory Disk Bit Floating Screen :
Nickname PointNo. (MBytes) Capacity Planes Aelrtr Resolution

irislI 4D/'70G 8 380MB 56 N/A 1280x1024
iris2 2400 Turbo 6 144MB 32 Y 1024x768
iris3 3120 4 144MB 32 N 1024x768
iris4 4D/'70G 8 380MB 56 N/A 1280x 1024

to

r6..

Table 2.2 1SI AI WORKSTATION CONFIGURATIONS

Nickname Model Memory Disk Bit Screen
No. (MBytes) Capacity Planes Resolution

ail V8WS 4 101MB 2 1280x1024
ai2 V8WS 4 101MB 2 1280x1024
ai3 V8WS 4 101MB 2 1280x1024
ai4 V8WS 4 101MB 2 1280x1024
aiS V8WS 4 101MB 2 1280x.1024
ai6 V8WS 4 101MB 2 1280xI024
ai7 V8WS 4 101MB 2 1280x.1024
ai8 V16WS 4 403MB 2 1280x1024

c. Sun-3/50

Table 2.3 shows the Sun Workstation configurations. All are connected

directly to the backbone Ethernet. The black-on-white monitors of the Sun diskiess

workstations are primarily used for administrative tasks at this time.

d. Symbolics 36xx

Table 2.4 shows the Symbolics workstation configurations. All are

connected directly to the backbone Ethernet. The Symbolics workstations are used for a

Table 2.3 SUN WORKSTATION CONFIGURATIONS

Model Memory Disk Bit Screen
Nickname_ No. (MBytes) Capacity Planes Resolution

sunsl 3/180S 12 490MB 2 1280xl024
sunlO0 3/50 4 N/A 2 1280xI024
sunll1 3/50 4 N/A 2 1280x.1024
sun12 3/110 4 N/A 2 1280x1024
sunl3 3/110 4 N/A 2 1280x1024
sunl4 3/60 4 N/A 2 1280x1024
suniS5 3/60 4 N/A 2 1280x1024
sun.16 3/60LC 4 N/A 10 1280x1024
sunl17 3/50 4 N/A 2 1280x1024
sunl8 3/50 4 N/A 2 1280x1024
sunl19 3/50 4 N/A 2 1280x1024
suns2 3/180S 12 490MB 2 1280x1024
sun20 3/60LC 4 N/A 10 1280x1024
sun2l 3/60LC 4 N/A 10 1280x1024

Table 2.4 SYMBOLICS WORKSTATION CONFIGURATIONS

Nickname Model Memory Disk Bit Color ScreenNo. (MBytes) Capacity Planes Resolution

syml 3675 5 IGB 24 Y 1280x1024 ,.
sym2 3640 1 180MB 1 N 1280x1024
sym3 3640 1 180MB 8 Y 1024x 1024
sym4 3650 5 512MB 1 N 1280x.1024

variety of research projects involving artificial intelligence. The syml machine provides

file server support for the other Symbolics machines using the Chaos protocol and its one

GigaByte (unformatted) storage capacity. The color-capable systems are used to display
I

static information with color providing an easier human interface.

e. Texas Instruments Explorer

Table 2.5 shows the Explorer workstation configurations. All are

connected directly to the backbone Ethernet. The TI Explorers are also used for artificial %

intelligence projects. They have the least graphical capabilities of any of the .S

workstations.

3. Digital Equipment Corporation VAX 11/785

Table 2.6 shows the two DEC* VAX 11/785 computer configurations. Both are

connected directly to the backbone Ethemet. Only the unixl machine was included in LI

this project. The vmsl machine may not be available in the future, so the effort to

Table 2.5 EXPLORER WORKSTATION CONFIGURATIONS

Model Memory Disk Bit ScreenNickname No. (MBytes) Capacity Planes Resolution %

exp I I 4 280MB 1 1024x808
exp2 I 8 420MB 1 1024x808
exp3 I 8 420MB 1 1024x808
exp4 I 2 140MB I I 1024x808

DEC is a registered trademark of Digital Equipment Corporation -

%5

12,'

.-

,5-
I'

" ,,.%' "11 " ' .'=',, 5 % " ,%
' ' , "

" " " ' " " "" " " ".. -''. .- , .V- " '- '.' ' SA%

Table 2.6 VAX CONFIGURATIONS

Model Memory Disk OperatingNickname No. (MBtes) Capacity System

unixl 11f785 24 1395MB UNIX
vms 1 11/785 8 1442MB VMS

develop appropriate code was deemed unnecessary. The unix1 machine is nps-cs.arpa

on MILNET and is the sole external access point to other machines connected locally via

Ethernet. It supports the various dial-up lines, as well as other administrative functions.

4. ISIV minicomputers

The computers in Table 2.7 make up the ISIV minicomputer complex. Only

isiv8 is connected to the backbone Ethernet. The other machines are connected to isiv8

in an Ethernet subnetwork. The ISIV minicomputers provide a high performance, multi-

backend distributed database. Any of the high-resolution black on white monitors can be

used with any of the hosts on the subnetwork. The character displays can also be used on '

any of the subnetwork hosts. The graphics capabilities of these machines are limited.

',V¢

Table 2.7 ISIV DATABASE MACHINE CONFIGURATION

Model Memory Disk Bit Screen .
Nickname No. (MBytes) Capacity Planes Resolution

isiv I V24S 4 602MB N/A 80x24char
isiv2 V24WS 4 500MB 2 1280x 1024
isiv3 V24WS 4 602MB 2 1280x1024-isiv4 V24WS 4 500MB 2 1280x1024
isiv5 V24S 4 602MB N/A 80x24char
isiv6 V24S 4 602MB N/A 80x24char
isiv7 V24WS 4 602MB 2 1280x1024-
isiv8 V24WS 4 459MB 2 1280x1024

isiv9 V24S 4 602MB N/A 8Ox24char

13
4.0.

C. SOFTWARE ko

1. UNIX Machines

Two versiora of UNIX are commonly used. The machines purporting to use

System V*, also incorporate characteristics of 4.2BSD and 4.3BSD. The relevant

incorporation is the Berkeley socket mechanism.

a. 4.3BSD

A "pure" 4.3BSD system (4.3 BSD UNIX #11) exists only on unix1. The

ISIV minicomputers use 4.2 BSD UNIX Release 3.07, with a multi-backend database

system installed [Refs. 18-201. The ISI Al workstations use IS68K 4.3 BSD UNIX: 4.OD

#2,

b. System V

The IRIS 4D systems use UNIX System V-based version 4D1-2.2. The

IRIS 2400 and 3120 systems use UNIX System V-based version GL2-W3.6. Both have

extensive 4.3BSD extensions. The Sun-3 uses an almcst System V version of 4.2BSD

UNIX. The currently installed release is 3.4.

a. Genera

The Symbolics Lisp Machines first used Genera 6.0 software. All

machines are now on Genera 7.1.

h. Explorer

The TI Explorer lisp machine first used Explorer version 1.0.2 software.

All machines are now on version 3.4 except expl, which is still on version 3.2.

IUNIX Systeni V is a trademark of AT&T Bell Laboratories

14

. " " ':"' , :'g¢ 'V '':'.' " .' .¢';:. & ",".;' ' . -";.'&:,' ,';€.' ' 4 ,; ' £ .' ,. _ :
, a -

D. SUMMARY .

The configuration described above is constantly changing. Additional machines are

acquired. Older machines receive hardware upgrades. The network is reconfigured.

Software releases are updated (especially 4.2BSD UNIX to 4.3BSD UNIX). The

fundamental needs for distributed computation in this heterogeneous environment

remain.

'

S.

15 NN

U '

a-

1[. PROTOCOLS

A. INTRODUCTION

Our visual simulation efforts rely on small data transfers to communicate among

machines. These small messages are typically commands and changing status indicators.

Hence, we optimized our protocols for small messages. Overhead to optimally encode

and decode packets was deemed inappropriate. The design criteria for developed

protocols were simplicity, ease of use, portability, and efficiency.

B. DIRECT CONNECION P

The client/server paradigm is used for direct connection. The client requests

services from the server, so establishing communications is asymmetrical. Once

communications are established, however, the protocol used is completely symmetrical.

[Ref. 21:p. 17]

1. High-Level Protocol -

The variety of data types supported is limited (see Table 3.1). Each message
I

contains exactly one instance of one type of data. All integer or float data is converted to

an ASCII character string before it is sent. It is converted back to the proper type after

Table 3.1 DATA TYPES SUPPORTED

Type (Length Elements Code Available______ (Bytes) ____"___ ____

single B Y "-
character sgIB

array C Y V.

integer single I Y
integer _ array J N a

single R Yfloat 4 s",'-RY.r.
array S N

16

:%.

reception. While the conversion is unnecessary when communicating between similar

architectures, it greatly simplifies the task of communicating between fundamentally b

different architectures. Knowledge of the other machine's architecture is not required. ,X

The inherent portability of this solution outweighs the processing cost.

A message is created with three fields. The type field is a one-character field.

It contains the appropriate code from Table 3.1. The length field is a four-character field.

It contains an ASCII string from 0001 to 9999. This string gives the length of the data

field. The data field is a variable length field containing the ASCII representation of the

data element. Figure 3.1 illustrates these fields.

While C programmers are continuously concerned with data types, Lisp

programmers are not. The Lisp routines support arrays of characters, single integers, and

single floating point numbers. Each of these is an object. Objects, not types (as implied V

in Table 3.1), are received and sent by lisp applications. The underlying protocol is the

same, the application interface is different3 .

Position
1 2131415 6 7 " n

T?

SLength Data
p
e

Figure 3.1 Message Format

Chapter 5 discusses applications' use. -%

17

S .%

2. Supporting Protocols

Full-duplex stream sockets are used to provide sequenced, reliable connection

between machines. The sockets are created in the DARPA Internet 4 domain. The

Internet pseudo-protocol is used [Ref. 221. No out-of-band capability was mcluded. We

could not envision a use for it, since our protocol is inherently asynchronous. If a strictly

synchronous protocol was used, out-of-band transmission might be necessary to interrupt

for an urgent message. In an asynchronous protocol, however, encoding the next

message gives the same effect. Processing overhead for encoding is no greater than for

continuous monitoring for an out-of-band message. With only a small volume of data

transfers expected, no urgent message waits very long.

Two ports, each with its own stream socket, are used for each channel between

machines. Although full-duplex, the stream sockets are used in a simplex mode. The

separate sockets are used because two processes cannot be bound to the same socket at

the same time. Two separate UNIX processes then monitor the independent send and

receive sockets. Blocking sockets are used, avoiding processing overhead for busy-

waiting. While non-blocking sockets are available in 4.3BSD [Ref. 21: p. 25], they were

not explicitly available in 4.2BSD [Ref. 221. Operating systems might include 4.2BSD

sockets rather than 4.3BSD versions and so the blocking socket mechanism was deemed

more portable. Both TCP/IP and the C routines provide buffering.

On the TI Explorer, sockets were also blocking 5. Direct access was made to

the TCP methods provided. Lisp streams are used for the Symbolics lisp routines. The

'This is the underlying mechanism of the Defense Data Network (DDN) and was chosen for its wide availability
and applicability to Department of Defense problems.

5' Version 1.0 of tie Explorer TCP/IP software uses blocking sockets. Version 2.0 uses non-blocking sockets.
There has been no update of this system's TI Explorer lisp routines to version 2.0.

18

~ Ja1~a%
1

W~(~-aJ~ ~~ .*~. ~j~*N, ~

lisp stream mechanism isolates the code from the issues revolving around blocking

versus non-blocking sockets.

C. BROADCAST

A broadcast message is sent to all machines on a local Ethernet. Those machines

that are waiting for some broadcast message will probably 6 receive it. If a machine on a

subnetwork is to get a broadcast message, an application must run on the gateway

machine that will rebroadcast on the subnetwork any messages received on the backbone

Ethernet. Machines not expecting a broadcast message must nevertheless process it and

reject it as inappropriate. The extra load on all machines connected to the Ethernet

restricts broadcasting to infrequent occurences until most of the machines used in

simulations 7 are on a private subnetwork.

1. High-Level Protocol

We expect users of the broadcast protocol to mix its use with the use of direct :

connections. The same data types and messages are supported (see Table 3.1).

2. Supporting Protocols

Full-duplex datagram sockets are used to provide connectionless broadcast

capability. The sockets are created in the DARPA Internet domain. As with our use of

stream sockets for the direct connection protocol, we use these full-duplex datagram

sockets in a simplex mode. We use a sending socket for one-way sending of a broadcast

message to all other machines on a single network or subnetwork. We use a receiving

socket for one-way receiving from a specific broadcasting machine on the network or

6Unlike the direct connect protocol, the broadcast protocol does NOT guarantee reception. Trying to provide

such a guarantee requires a feedback machanism so that the sender knows that the machines expected to receive the
broadcast did so. This is difficult without resorting to a direct connection or flooding the network with messages.

The IRIS machines and the Lisp machines are the ones principally used for visual sinfulation.

19

~~~~',~~~~~~~ 
06d 

5~~% S A % % N' NN%



subnetwork. Direct connection, with its use of guaranteed reliable stream sockets, is

used for any other communication, including return messages. [Ref. 21: pp. 32-34] b

As in the direct connection protocol, independent UNIX processes are bound to

the sockets. Since broadcasting is a one-way activity, a sender or receiver only spawns

one8 UNIX process.

D. SUMMARY%

By building our high-level protocols on top of DARPA TCP/IP standards, we provide

the highest degree of portability possible today. By using full-duplex stream sockets and

datagram sockets in a simplex mode, we do not make full utilization of a socket's

capabilities. However, this concern is outweighed by the increased simplicity and

resultant maintainability of the code. The use of ASCII character strings for the messages

is simple and makes interconnection with diverse architectures straightforward.

OR,.

If broadcasting were used exclusively for complete connectivity, each of n machines would spawn n processes.
f direct connection was used exclusively for complete connectivity, each of n machines would spawn 2n-2 processes.

S20 N

r%

p - . *g ~ ... .. ~. w-C '''A-' .' ~ *' .. t''' h .. 'a. m * ~ ,t~'Ale,



IV. IMPLEMENTATIONS

A. INTRODUCTION

The first connection was between the IRIS 2400-Turbo and TI Explorer. Then the

Symbolics Lisp machines were included. These routines have had extensive use

[Refs. 8,9, 11]. The IRIS functions were updated for the IRIS 4D, coincidentally

providing Mex support on the older IRIS machines. Broadcast capability was added for

UNIX-based machines. A port to 4.3BSD UNIX (application calls unchanged) was begun.

B. SYSTEM V UNIX

All our System V UNIX-based systems include the socket mechanism first

introduced by 4.2BSD. Sockets are a key aspect of all implementations. We expect they

will become part of System V or its successors [Ref. 231. The System V-unique

semaphore and shared memory interprocess communication (IPC) capabilities are also V.
used.

1. Silicon Graphics, Inc. IRIS 2400 •

a. Sockets

The socket was introduced in 4.2BSD as the preferred metaphor for IPC. It

was easy and efficient to implement and the select mechanism could be used to

implement remote procedure calls, if desired [Ref. 23]. System V had no comparable

mechanism until version 3 was released with streams. The BSD sockets were included

by many vendors, Silicon Graphics, Inc. included 9. While the use of sockets could be

W4.%

The System V version available on the IRIS machines, at the start of the project, was version 2 and so streams
were not considered.

21

Ile I

• S

U ~ ~ ~ a a Q, ~ W~ * ~%~P %~g%~ ~a' ~%''vhr'. I



~~~XR~~~~ No~F V~VI PL~.) ~.~ ')~ . X mVJ' r- 's'' J..VP.W - I M .

replaced with streams, device drivers would have to be written. The advantage of

streams is the ability to filter them between streamhead and the actual device driver.

These filters, however, reside in the kernel's address space and have the kernel's

permissions [Ref. 24]. In our environment, the potential performance increase is not as

important as the requirement for simplicity.

The system call for socket creation is socket. The system calls supporting

socket configuration are setsockopt, bind, connect, and accept'° [Ref. 22]. To simplify

their use, these are all repackaged into four high level routines: connectserver and

connect_client for direct connection, start-broadcast and broadcast-receive for

broadcast. These routines are encapsulated in netV.c. netV.c can be separately linked

with any application that needs to make a server/client connection using stream sockets

or a broadcasting connection using datagram sockets. Table 4.1 describes the four

routines.

Using the socket number", a process can transmit data through the socket.

In our system, sockets for inter-computer communication are created and used by the

send and receive processes exclusively. The file netV.c is not linked with the application

at all.

1o The accept system call is only relevant to stream sockets. The setsockopt, bind, and connect system calls are

used with both stream sockets and datagram sockets.

In the direct connect protocol, the server process reads from and writes to a remote socket number. The client
process reads from and writes to its local socket number. The reason for this is that a server could be connected to dif-
ferent clients (although not in our implementation) at different times. The client, meanwhile, is only going to connect
to the one server. In the Internet domain, all necessary routing information, for either server or client, is contained in a
sockaddr in structure and is accessed (transparently) via the socket number.

In the broadcast protocol, both the broadcaster and receiver(s) use their local socket number because they are
using connectionless datagram sockets. The routing information is also contained in a sockaddr in structure.

N
22

hI

Table 4.1 SOCKET SUPPORT FUNCTIONS

Function Description Use
Creates socket. Binds that int connect_server remote client name, portnumber)
socket to remote client ad- char remoteclient name[];

connect_server dress and port. Waits to ac- int port-number,
cept the remote client con-
nection. Returns the socket remotesocket = connect-server(remote client_name,

number for the remote client. port number)

Creates socket. Binds that int connectclient(remote-server-name, port-number)

socket to remote server ad- char remote server nameo;
connect_client dress and port. Connects int port number;

with remote server. Returns local-socket = connect_client(remote server name,
the local socket number. rtbe

po..._nwner)

Creates socket. Sets it to hit start-broadcast(portnumber
broadcast mode. Binds it to int port number;

startbroadcast local address and specified lclsocket = startbroadcast(poi~number)
local port. Returns the local

socket number.

Creates socket. Binds it to int broadcastreceive(broadcaster-name. broadcaster-port)

local address and specified char broadcastername[];

broadcast-receive port. Adds broadcaster ad- int broadcasterjport;

dress and port. Returns the localsocket = broadcast receive(broadcastername,
local socket number. broadcaster..ort)

b. Semaphores
The semaphore mechanism was chosen as the least expensive, in both

space and time, for communication between processes. Signals could have been used,

but implementation would have been more complex and less reliable. Signal-based

communication functions would also have been more difficult for the application

programmer to use [Ref. 25: p. 101. There are two semaphore ids maintained for each %

connection 12. One is used to communicate with the send process; one is used to

communicate with the receive process. The two semaphores are both used to signal their

process when it is safe to proceed. A send process is permitted to proceed only after the
.1

12 Two semaphore ids are required for direct connect protocol connections since bo", a send and a receive pro-

cess are spawned. Two semaphore ids are still created for broadcast protocol connections, even though only one pro-
cess is spawned.

23

application has requested a write action13 on the channel. A receive process is permitted

to proceed only after the application has read all data from the shared memory buffer. b

Neither the send nor the receive process is executing more than absolutely necessary,

assuring maximum availability of the local processor to the application.

The system calls supporting semaphores are semget, semop, and semctl.

To simplify their use, they are repackaged into three high level routines: semtran, P, and

V [Ref. 25: pp. 188-190]. These routines (and a support routine semcall) are

encapsulated in semaphore.c. It can be separately linked with any application that needs

semaphores. Table 4.2 describes the three routines.

c. Shared Memory

A cost barrier to IPC in UNIX is the cost of copying data from one process p

to the kernel and then from the kernel to another process. Using a shared memory

segment, as a buffer, minimizes this overhead. To further reduce overhead from system

calls, only a single segment is created. An application accesses the entire segment, while -

a send or receive process accesses only its preassigned section. Figure 4.1 displays the

layout. The message area of each section is used for several purposes. It is formatted as

Table 4.2 SEMAPHORE SUPPORT FUNCTIONS

Function Description Use

Creates a semaphore associ- int semtran(key)
semtran ated with a key. Returns a int key;

semaphore id. sid = semtran(key); S

void P(sid)

P Acquire semaphore int sid;

V Release semaphore void V(sid

int sid;

1 The data must also be valid in the shared memory buffer. All this is transparent to the application, which only -

issues a write command. b

24

srIrr W V rr-1 % 9%4'6. 4~

A.

Receive Section
Message I Data

0 1 1 2 1 3 1 ... I n

Send Section
Message I Data0 1 1 2 13 1 1 .. n:

Shared Memory Segment
Receive Send Protocol

n n 2n 2n 2n I

0 ... + + ... + + +
3 4 7 8 19

where n = LARGESTREAD from shared.h

Figure 4.1 Shared Memory Segment Data Assignment

a long (4-byte) integer. Table 4.3 describes the meaning of three-state values placed in

this area.

Table 4.3 SHARED MEMORY MESSAGES

Meaning Meaning Meaning
Value to to to

send receive Application
send: Data in shared memory
has not yet been sent to other

Data of length given is Application has not machine.

positive in shared memory, finished reading data m

ready to be sent. from shared memory. receive: Valid data of length
given is in shared memory,
ready to be read.

Application has read send: Previous message has
data from shared been sent. Ready to send

zero Nothing ready to be memory. Message next message.
sent. from other machine can receive: No valid data in

be read. up to LAR- shared memory.
GESTREAD bytes. __

negative Signal to terminate. Signal to terminate. N/A

25 A.

% N % NI

7I

The system calls supporting shared memory are shmget, shmat, shmdt, and

shictl [Ref. 25: pp. 192-198]. To simplify their use, they are repackaged into four high

level routines: sharedsegment, dynamicsharedsegment, detachsharedsegment, and

deletesharedsegment. These routines (and a support routine attach_within-datasegment)

are encapsulated in shareseg.c. It can be separately linked with any application that

needs shared memory. Table 4.4 describes the four routines.

The implementation of shared memory on the IRIS 2400 and IRIS 3120

was a surprise. A basic UNIX memory allocation scheme is shown in Figure 4.2. Each

process has its own text, data, and stack sections. Neither the relative locations of these

sections nor the direction of growth for stack and data sections is specified for UNIX.

The shared memory segments are logically part of the data section [Ref. 26: p. 1511.

Table 4.4 SHARED MEMORY SUPPORT FUNCTIONS

Function Description Use
Creates (if not already in ex- char *shamdsegment(key, nbytes, shmid)
istence) a shared memory long key;
segment associated with a long nbytes; ''
key. Attaches application to lgbe

sharedsegment that shared memory segment. int *shmid;

Returns a shared memory segment = sharedsegment(key, nbytes, shmid)
segment address and id.
Does not permit subsequent
dynamic memory allocation.

char *dynamicsharedsegment(nummachines,
Creates (if not already in ex- key, nbytes, shmid, freespace)
istence) a shared memory tnt nummachines; ,

segment associated with a

key. Attaches application to long key;
dynamicsharedsegment that shared memory segment. long nbytes:

Returns a shared memory int *shmid;
segment address and id. Per- it freespace"

mits subsequent dynamic
• "ea

memory allocation. segment = dynamicsharedsegment(num-
machines, key, nbytes, shmid, freespace

detachsharedsegment Detach shared memory seg- void detachsharedsegment(segment

ment from application char *segment.

void deletesharedsegment(segment, shmid

deletesharedsegment Delete shared memory seg- char "segment:
ment

int shmid:

26

%~~ N .

Stack

growth

growth

Data

'Sr,

p
Code -.

%

Figure 4.2 UNIX Memory Allocation

Actual implementation is left to the team porting UNIX to the machine. The Silicon

Graphics, Inc. implementation attaches a shared memory segment to the first available S

valid1 address within the data section. However, the beginning of shared memory

delimits the size of all other sections [Ref -6: pp. 367-370]. Figure 4.3 illustrates this

Shnred memory qegment, must begin on a page bounda'y This allows easy table-driven access by multiple %"4
prmesqes. On the IRIS 2400 and 3120 machines, the Motorola 68000 architecture is used. The pages are 8K.Bytes.

27 q-

S,~'..,.'.* **~. -JI

Unallocated

Unallocated Maximum
Data Unavailable

Available Section
Address Memory

Memory

Shared emorv Seament

Data Section Data Section

Code Section Code Section

Before After

Figure 4.3 IRIS 2400 Default Shared Memory Attachment

relationship. While no dynamic memory calls 15 are made, the default arrangement works

fine. But when dynamic memory allocation-linked lists and inakeobjO calls are

examples-is needed, the technique fails.

To allow dynamic memory allocation, the shared memory segment must

be attached at an address beyond the greatest ever required for regular data. Dynamic

allocation can then occur without reaching the shared memory segment. Attaching at an

unknown address both within the data section and sufficiently beyond existing data to

permit dynamic data section growth, can be done at least two ways. First, the data

section can be expanded until it is as large as possible, then the shared memory segment

15 Dynamic memory allocation is made with system call brk or alternate sbrk. Library functions malloc, realloc,

and cailor use brk and so also do dynamic memory allocation.

28

.%-.-.- -,,%

can be attached at a valid location just inside this maximum value. While minimizing

application programmer effort, this technique requires many system calls to grow the

data section. It also has the fatal flaw of limiting the stack section, if the stack section

and data section grow into the same unallocated memory. Second, the application can be

required to prespecify the maximum amount of dynamic memory allocation it might use.

The solution adopted is adding a freespace parameter to the

sharedsegment function; and renaming it the dynamicsharedsegnent function. The

sharedsegment function was retained for backward compatibility. The freespace

parameter gives the caller the ability to specify the maximum additional memory

required for the application. A request for this additional space is made before the shared

memory segment is attached. After acquiring (and freeing) the additional space, the next

available address is determined and the shared memory segment is attached to the next

valid address. We have now established the shared memory segment beyond the

specified growth of the application's data.

When multiple machines are connected together, there must be a separate

shared memory buffer for each channel. There is no way to connect a second shared

memory segment. The solution adopted is adding a nummachines parameter to the
V

dwnamicsharedsegment function. The nummachines parameter requires the application

developer to specify, in advance, the maximum number of channels that can be created in

the application. The first dynamicsharedsegment call establishes a shared memory

segment big enough for nummachines maximum requested channels. Subsequent

dynarnicsharedsegment calls return the same shared memory ic as the first; but return a

different address within the segment. Since the application does not directly access these

functions, there were no problems caused by this parameter list change.

-V

29

P"p.

'4

The shared memory functions are isolated from the application by the

machinepath, dynamicniachinepath, dynamicmachinepaths, and deletemachinepath .6

1
functions16 . For the direct connect protocol, each machinepath, dynamicmachinepath, or "

dynamicmachinepaths call spawns both a send and a receive process. For the broadcast

protocol, these calls spawn only a send process (for the broadcaster) or a receive process

(for the receiver). In all cases, the spawned processes issue a sharedsegment call to

attach to the shared segment earlier created by the spawning function. A command line f-"

parameter is passed providing the offset into the shared memory segment that the
I

spawned process is to use. Figure 4.4 illustrates a system with three machines and two

channels.

d. Buffering

(1) Direct Connect. When a receive process is quiescent, waiting for

the application to read from the shared memory buffer, anything sent to it is buffered by

TCP/IP. The buffering provides the reliable delivery promised by a stream socket. The

next read command will deliver up to LARGESTREAD bytes into the receive data area of

the shared memory buffer. Since the messages are variable length, there cannot be a

guarantee that only one message was read'7 . Multiple messages might be in the shared

memory buffer. A partial message might be in the last bytes.

The shared memory buffer management is handled by the various

read functions 18 provided. Each read, requested by the application, is satisfied from the

16 See Chapter 5. Sections A. 1.b(1) and A. I.b(3) for more information on these functions.

17 The idea to pad all messages to some arbitrary size was considered and rejected. Whatever size was chosen

would always be too small for some character array. If the maximum Ethernet packet size was chosen, an unnecessary
network dependence would be introduced. The cost of application buffer management is considered acceptable, espe- I

cially since it is incurred only on reads.

"See Chapter 5. Section A. l.b(2) for more information on these functions

30 -'z
'ft.
ft..

S- - - -. -... - - - - -

I'.4

shared memory buffer I
unallocated - - - - - - - - - - -- en port

memory receive port
Ii '

uns1 located unallocated

Data memory memory

Data Data I

Application sn reieL en Treceive

shared memory buffer I ---------------------- -------
unallocated ---------------------------- send port

II

I . II

--

memory e bfreceive port.. 2 .

unallocated unallocated ule lc

Data memory memory eomr

Data Data D

p.-

Application send receive sdcv1ive
s h a r e d m e m o r y b u f f e r - - -- -- - e n p r,, :a.

__shar'ed memory buffer :1 _.

F u: .4 Th ee- ac receive port

unallocated.... ... -- - - - - - - - - - send port
um~lIoca ed ' ... :.......................

~~~~- - - - - - - I I 'a- I~ ' -* - - - a ~

memory , ---- receive -port T---

unallocated unal located unall1oc-ated uLnaillocated ?."

Data memory memory memory memory,,

Data Data Data Data

Appli cati on send recei ve send receive

PIEthernet
Figure 4.4 Three-Machine Interconnection :

31 '



shared memory buffer. Remaining valid data is shifted into the low order positions of the

data area. The count of valid bytes, held in the message area, is decremented. The

shared memory buffer now appears as it would have, if it had only received the

remaining data and not the first message at all. As long as only entire messages are

received (one or more at a time), this works well. When the TCP/IP buffer has more data

than the data area can take at one time, however, the receive process deposits

LARGESTREAD bytes in the shared memory data area. It is highly unlikely that this will

be on a message boundary.

A socket read overwrites all data in the data area. A partial data

reception must be stored and concatenated with bytes from the next socket read to get a

complete message. The protocol area was introduced to retain the protocol

information1 9 required to decipher the variable length messages. The count of already

received bytes of a message is held here between socket reads. A message's protocol

information is stored here, too. Protocol information is built up until complete (covering

the possibility that the break is in the protocol information itself). It is then maintained

until the entire message is received and read by the application. The buffering works

205with data areas as small as four bytes2 °.

(2) Broadcast. The datagram socket used by the broadcast protocol

preserves message boundaries. Each recvfrom call to a socket returns only one message.

This message must be no longer than LARGESTREAD bytes. The shared memory buffer

management routines are not needed.

19 See Chapter 3. Section B. I for a description of the protocol

2o LARGESTREAD must be specified in multiples of four bytes. The smallest possible data area is therefore

four bytes.

.j2



nVi V4.-d61 hV* Ui - J4 - h.. %. .d

I.

TCP/IP keeps unread messages on a queue. This queue may not be in

sending sequence. If the queue buffer becomes full, subsequent messages are lost

[Ref. 21: p. 8-8]. The sending buffer can easily be filled if many messages are broadcast

in a short period of time. Each broadcast message must be processed by every host on

the Ethernet. Only then can the next be sent. No access for manipulation of the TCP/IP

sending buffer is provided because its size is normally specified during system generation .1

and is not easily manipulated by an application program.

2. Silicon Graphics, Inc. IRIS 3120

There are no required changes to the IRIS 2400-Turbo code. The Makefile

must be changed to remove the -Zf compile flag, since there is no floating point

accelerator board in this machine.

3. Silicon Graphics, Inc. IRIS 4D

The IRIS 4D required programming changes only to the shared memory

module, shareseg.c. The path name for user directories is also different. Changes were

necessary to the Makefile because the lusr/include directory structure changed.

The IRIS 4D is based on the MIPS RISC architecture. The UNIX

implementation was done differently than that for the Motorola 68020. Shared memory

segments are not attached to addresses within the data section, as illustrated in Figure

4.5. They are attached at a much higher address, yet accessing them does not result in a

segmentation violation. This is a more robust technique that obviates any manipulation

of attachment addresses. Multiple shared memory segments are easily attached, using

default system calls. The sharedsegment call suffices, even when dynamic memory

allocation is needed. To maintain backward compatibility for application code,

dynamicshtaredsegment calls sharedsegnent, ignoring the freespace parameter, when

compiled on an IRIS 4D, and calls attach within datasegment when compiled on an

older IRIS machine.

33

7'



Shared Memory Sezzen~t

Unallocated Maximum Unallocated
Data

Available Section Available
Address

Memory Memory

S

Data Section Data Section

Code Section Code Section !

Before After

Figure 4.5 IRIS 4D Default Shared Memory Attachment

C. 4.3BSD UNIX

The netV.c file functions properly on a 4.3BSD machine that is connected to only

one network. The startbroadcast function does not properly handle multiple networks.

The other functions work correctly, even when the machine is connected to multiple %

networks.

All other functions depend upon semaphores and shared memory for

communication between the spawned processes and the main application. Stream

sockets'1 could be used to provide the IPC between these processes under 4.3BSD. The

21 Unidirectional stream sockets are equivalent to pipes.

LV%

341



three channels22 used will have to be multiplexed into one, but the implementation is

otherwise straightforward.

D. LISP MACHINES

The communication code is a flavor to be mixed with the application [Ref. 11]. The

Explorer software is syntactically equivalent to Genera 6 on the Symbolics. With a

simple change in the sequence of method and flavor names, the Genera 7 code runs on

the TI Explorer. The older flavor, originally developed for the Explorer, is also presented

to illustrate working directly with TCP/IP instead of using a stream.

1. Texas Instruments Explorer I

This older flavor works with Release 1.0 of the Explorer TCP/IP software. It

will not work with Release 2.0 as the implementation was changed from blocking to

non-blocking [Ref. 271.

Messages to the flavors in the ip package are made together with messages to

the tcp flavors. Network-independent addressing is not used. Table 4.5 describes the

addressing schemes possible [Ref. 28: pp. 4-2--4-3]. Class C addressing is used by the

Computer Science Department. Figure 4.6 shows the simple encapsulation of the

addresses for irisl, iris2, and iris3. Extension to include other machines is easy.

Table 4.5 INTERNET ADDRESSING CLASSES I"

Class No. No.
Networks Hosts

A 128 16,777,216
B 16,384 65,536
C 2,097,152 2561

22 These are the semaphore, the message areas of the shared memory buffer, and the data areas of the shared .

memory buffer. The first is unidirectional from application to spawned process. The second is bidirectional and three
state (see Table 4.3).

35



(defvar *irisl-address* 3221866502)
(defvar *iris2-address* 3221866504)
(defvar *iris3-address* 3221866505)

(defvar *dest-address* nil) the tcp-ip or internet address
look in network configuration

(defun iris (x)
(cond ((equal x 1) (setq *dest-address* *irisl-address*))

((equal x 3) (setq *dest-address* *iris3-address*))
(t (setq *dest-address* *iris2-address*)) ) )

Figure 4.6 Encapsulation of IRIS Addresses

A port is acquired by using the :get-port method of the tcp-handler flavor.

Here, shown in Figure 4.7, we use the global instance, *tcp-handler*23 to create specific

instances of the Transmission Control Block (TCB) for each of the two ports. Only the

client side of the server/client paradigm has been implemented. The client is created by

using the :active mode argument to the :open method of the tcp-port flavor. Both the

sending and receiving ports are full duplex, but are only used in a simplex mode. Figure

4.8 shows the creation of the sending port [Ref. 28: pp. 4-12--4-18].

The three fields in a message are sent and received separately. Each field is

then treated as a separate object. Figure 4.9 illustrates sending a message. For all fields,

the urgent argument is specified as nil. The push argument is specified as nil until the

(defvar *tcp-handlerl* (send ip::*tcp-handler* :get-port))
(defvar *tcp-handler2* (send ip::*tcp-handler* :get-port))

Figure 4.7 Lisp Port Acquisition

.4

23 The double allows the tcp-handler to be found, since it was not created "exportable" in the Ip package.

36



.

P

(send talking-port :open
:active tcp will begin the procedure to establish

connection (default vs :passive)
talking-port-number port number of destination host
destination machine name or address if blank and

in :passive mode local machine waits for
connection

30 ) set max seconds before read request times out

Figure 4.8 Opening a Lisp Client Connection

(progn
(send talking-port :send

typebuffer

1
nil

nil
(if (= (length lengthbuffer) 4)

(send talking-port :send
lengthbuffer

4
nil
nil

(progn
(loopfor *loopvariable* (length lengthbuffer) 4

(send talking-port :send "0" 1 nil nil)
(send talking-port :send lengthbuffer (length lengthbuffer) nil nil) )

(send talking-port :send
buffer
buffer- length

t•
nil ) )

Figure 4.9 Sending a Message

data buffer is sent, when it is specified as t. The entire message is thus sent as a unit to

the other machine. '

2. Symbolics 36xx

Genera 7 syntactic conventions are followed. The principle difference with

Genera 6 conventions is in the defmiethod function. In Genera 6 (and the TI Explorer),

the method name follows the flavor name. In Genera 7, the method name precedes the

37

NS



14

flavor name. Figure 4.10 shows the difference. It also shows the other main difference

with the earlier code, that streams are used. The use of streams improves portability and

eliminates the need for the :reuse-iris method24 . It may be slightly slower, but any

difference has been unnoticeable.

Another change was to remove the dependence on hard-coded addresses. The

method :init-destination-host was added to the conversation-with-iris flavor (see

Figure 4.11). By using the net:parse-host function, the application need only know the ,4,

name of another machine. As network tables are updated, no change to the application

code is necessary unless a different machine is desired.

(defmethod (conversation-with-iris :stop-iris)
()

(progn (send talking-port :close)
(send listening-port :close) ) )

Genera 6

(defmethod (:stop-iris conversation-with-iris)

(progn (send talking-stream :close)
(send listening-stream :close) ) ) -

Genera 7
Figure 4.10 Genera 6 and 7 definethod

X

(defmethod (:init-destination-host conversation-with-iris) 
I

(name-of-host)
(serf destination-host-object (net:parse-host name-of-host)) )"

Figure 4.11 Generic Host Addressing .I

14 The :reuse-Iris method is retained for backward compatibility.

I

38 ,



U.

E. SUMMARY

For UNIX-based machines, generic routines are developed for semaphore use,

shared memory use, and socket use. The socket routines use both stream sockets and

datagram sockets in a simplex mode to provide directly connected client/servers and

unconnected broadcasting communications. IRIS 2400, 3120, and 4D systems are fully

supported. 4.3BSD systems are supported with mid-level socket calls only. .:..

For Lisp machines, stream-based functions are available for direct connection as

clients only. These functions are available directly if using Genera 7 syntax and with

minor modification if using Genera 6 syntax.

%

39r



V. USE BY APPLICATIONS

A. INTRODUCTION

The application using either direct connect or broadcast protocol is not concerned

with system-level implementation details. Almost all aspects of shared memory,

semaphore, and socket use are hidden. The number of other machines to be connected

to, the use of dynamic memory allocation, and the names of the other machines are all

that concern the application in setting up a connection. The synchronization, or lack

thereof, in communication between machines is a design decision, not a protocol

decision. P

B. DIRECr CoNNEcT

A UNIX-based machine can be either a server, waiting for a client to call and

establish a connection, or the client. A Lisp machine is always a client.

1. UNIX-Based Machines

The functions provided for UNIX-based machines are all written in C. They

must be linked into the application program using them. Figure 5.1 is an example make

file for creation of an application program on an IRIS system.

There are two independent processes, send and receive, that are spawned to

create the sockets and monitor them. They are made separately with the nakefile25

contained in their subdirectory.

25 See Appendix A

40



CFLAGS =-Zg -Ins -g -p

SHARE =/work/barrow/share3/ 
iN

MAIN = cars imu.c

OBJS = First group of ofiles 4

OBJS I = Second group of ofiles

OBJS2 = Third group of ofiles

OBJS3 = $(SHARE)io.single.o
$(SHARE)npath.o \
$(SHARE)semaphore~o\
$tSHARE)shareseg.o\
S(SHARE) support .o

OBJS4 = Fifth group of.ofiles

carsimu: $(MAWIN) $(QBJS) $(OBJSL) $(OBJS2) $(OBJS3) $(OBJS4)
cc -o carsimu $(MAIN) $(OBJS) $(OBJS1) S(OBJS2) S(OBJS3) $(OBJS4) $(CFLAGS) -Ibsd

$(MAIN), const.h vars.h

$(OBJS): const.h vars.h a-

$(OBJS1): const.h objects.h

S(OBJS2): const.h -

S(SHARE)mpath.o: S(SHARE)shared.h 4
cc -c -o $(SHARE)mpatb.o $(SHARE)mpath.c $(CFLAGS)

$(SHARE)support.o: S(SHARE)shared.h S
cc -c -o $(SHARE)support.o $(SHARE)support.c $(CFLA3S)

$(SHARE) semaphore.o:
cc -c -o $(SKARE)semaphore.o $(SHARE)semapbore.c $(CFLAG3S) 4

S(SHARE) io..single .0: $(SHARE)shared. h
cc -c -o S(SHARE)iosingle~o $(SI-ARE)iosingte.c $(CFLAGS)

$(SHARE)shareseg.o:
cc -c -o $(SHARE)shareseg.o $(SHARE)shareseg.c S(CFLAL3S)

Figure 5.1 Sample Application make File

a. Application Setup

The server process must be started first. The application can set up the

commuunications paths as part of initialization, or it can do so only in response to a

41



I,..

specific operator command. In either case, there will be two messages returned to the

terminal for each direct connection setup. Figure 5.2 illustrates a normal, single

connection, response. Since the receive and send processes that provide the messages

are independent, the two lines shown may be jumbled. A variety of errors can occur at

this point. Table 5.1 gives the most common error messages, their cause, and solution.

So
Server waiting to connect to name
Server waiting to connect to name .

Figure 5.2 Normal Server Response

Table 5.1 SERVER ERROR RESPONSES

Message Cause Solution
Server couldn't open a local socket: Socket in use due to previ- Run p!. Use kill to ter-

ous run not terminating minate any receive or send
with deletemachinepath processes still running

Server couldn't bind address to local socket: Socket in use due to previ- Run PS. Use kill to ter-
ous run not terminating minate any receive or send
with deletemachinepath processes still running

shmget: Permission denied The shared memory seg- Change key in
ment already exists, but is machinepash call. recom-
owned by another uid pile, and rerun

shmget: Invalid argument The shared memory seg- Run rmshare and rerun ap-
ment already exists, but is plication
too small because the value
of LARGESTREAD has
been increased

qhmat: Permission denied Someone ,se's send or re- Check that proper path is
ceive process is being used in shared.h, for
spawned application's include of

shared.h, and in
application's Makefilc.
Correct and recompile.

Outdated software is being Ensure that all modules are
used. the most current. If some

are not, get updated

modules and recompile-%
especially send and re-

ceive.

42

------ ....
X-0s

NjL AL



The client process must not attempt connection until after the server is

properly running (the messages in Figure 5.2 have been received). The application can

set up the communications paths as part of initialization, or it can do so only in response

to a specific operator command. When client communications setup is part of the

initialization, care must be taken to wait for a ready server before starting the client. In

either case, there will be two messages returned to the terminal for each direct

connection setup. Figure 5.3 illustrates a normal, single connection, response. Since the

receive and send processes that provide the messages are independent, the two lines

shown may be jumbled. A variety of errors can occur at this point. Table 5.2 gives the

most common error messages, their cause, and solution.

b. Coding Practices

(1) Connection. Making a connection requires two acts. The first is to

set aside space for the data required. Figure 5.4 shows this code when local declaration

is used. The Machine structure can also be declared globally. The second is to request

the connection with a machinepath, dynamicmachinepath, or dynamicmachinepaths

call. Table 5.3 compares the three types of call, while Figure 5.5 gives a server example

for dynamicmachinepath. A description of the parameters used is in Appendix A,

Section 2.a.

For flexibility, there is often a requirement for command line %

specification of the machine to be connected to. For ease of use, there is often a

Connection established with name
Connect ion established with name

Figure 5.3 Normal Client Response

43



Table 5.2 CLIENT ERROR RESPONSES

Message Cause Solution %
Client couldn't open a local socket: Socket in use due to previ- Run ps. Use kill to ter-

ous run not terminating minate any receive or send
with deleteniachinepath processes still running

Client couldn't connect to the remote server socket: The server has not success- Terminate client, restart
fully started server, restart client when

server started

The port numbers used by Correct, recompile, and
client do not correspond to rerun
those of server

shmget: Permission denied The shared memory seg- Change key in
ment already exists, but is nachinepath call, recon-
owned by another uid pile, and rerun

shnget: Invalid argument The shared memory seg- Run rmshare and rerun ap-
ment already exists, but is plication
too small because the value
of LARGESTREAD has
been increased

slunat: Permission denied Someone else's send or re- Check that proper path is
ceive process is being used in shared/h, for S

spawned application's include of
shared.h, and in
application's Makefile.
Correct and recompile.

Outdated software is being Ensure that all modules are

used. the most curent. If some S
are not, get updated
modules and recompile-

especially send and re-
ceive. F

#include "/work/barrow/share3/shared.h" %

main( argc, argv)

L O C A L D E C L A R A T I O N S

Machine cardriver; /* structure for conmunications system */

Figure 5.4 Creation of Machine Structure

44



W TW

Table 5.3 PATH CONNECTION

Function Purpose
Creates a link between two machines

machinepath No subsequent dynamic memory allocation al-
lowed

dynamicmachinepath Creates a link between two machines
Subsequent dynamic memory allocation allowed
Creates a link between two machines
Subsequent dynamic memory allocation allowed
Multiple calls provide multiple links to one or
more other machines

main(argc .argv)

SYSTEM INITIALIZATIONS

/* Open up the net path to other machine (iris3 default) */
dynamicmachinepa th(2,othermachine .4,5, " server" .&cardr ive r, 2000000);

Figure 5.5 Server Creation

requirement for a default specification. Figure 5.6 illustrates one way to accomplish this

for a client. This example does not require that the network alias be defined to the

system as it uses the complete address. The user, however, only enters the alias.

(2) Program Use. The simplest high-level communication paradigm is

reading from and writing to the other machine. It closely parallels handling files and

terminals in C. It was chosen for these reasons.

Twelve high-level functions are available. Four provide status

information, four write to other machine, and four read from other machine. Table 5.4

describes these functions. The parameters used by these calls are described in Appendix

A, Sections l.a and 9.a. 5.,,,.

S"45
0S



- --- - - - - -.

rnain(argc.argv)

int argo: /* argument count */
char *argv[]; /* pointers to the passed in arguments *P

/*** ************************************ ***********************

DATA DECLARATION

char othermachine[501; /* name of other machine */

SYSTEM INITIALIZATIONS

/* pull out the string from the argument list */
i f argc > 2) 'I.,

printf("NAV: incorrect argument count! use nay <alias>\n");
exit l);

/* pull out the name of the other string, if it exists /
if( argc == 2 )

strcpy( other-machine, "npscs-" ):

strcat( othermachine, argv[l] );

else
strcpy( other _machine, "npscs-iris2" );

/* Open up the net path to other machine (iris2 default) */
dynamicmachinepath(2.other machine,5,4,"client".&car.2000000);

Figure 5.6 Command Line Direction for Connection

There is a variety of ways to use these functions. Figure 5.7

illustrates a typical scenario. This code is from the display station of a two-workstation

driver simulation. The display station provides its status (that of the "world") on each

pass through its graphical display loop. The control station must read that status on each

pass, to update the vehicle position on its track diagram. On each pass, the display

station checks to see if any commands have been received. This is an asynchronous

communication, as the display station continues with or without a control station

46

L . = . . . . - - , . , , , , , . m - = p ,=,, = -.- . , , , - . , S,



command. The asynchronous reads are guarded by a receiverhas data call that detects 4

arrival of a message. Other receiver has data calls are used to "busy wait" for the next

message. In practice, it has not been necessary to include any but the first "busy wait"

receiver hasdata call. TCP/IP buffers messages when they are not immediately read.

It then blocks them into the largest grouping possible and delivers them when the next

read occurs. The LARGESTREAD defined constant in shared.h determines this

maximum grouping. The first message is read by receive. The socket is then ignored

until the application reads the data. During this time, the other messages have all been

sent and buffered by TCP/IP. There is a slight delay between the time the first message is

read and the block containing all the rest is read. Thus the necessity for the first "busy

wait" receiverhasdata call. The other "busy wait" receiverhasdata calls are simply

for robustness.

The "busy wait" sender isjree call determines if something has

happened to the other machine or Ethernet. The first write will always succeed, as it goes

to a buffer. If there is a communications problem, TCP/IP will not accept it and the

Table 5.4 COMMUNICATION FUNCTIONS

Function Action
senderisfree Returns TRUE if a message can be sent.
receiverhasdata Returns TRUE if a new message has been received.

receivedtype Returns a character indicating the type of the message. CHARACTERETYPE,
INTEGERTYPE. and FLOATTYPE are predefined. CHARACTERARRAYTYPE,
INTEGER_ARRAY_TYPE, and FLOATARRAYTYPE ae predefined.

number received Returns an integer indicating how many elements in message.

writecharacter
write-integerwrite_intr Send a single value of the type to other machine.

write-float
writecharacters
readcharacter
read-integer

Move single value of named type from buffer to application program storage.
readfloat
read characters

47



main (a rgc a rgv)

MAIN SIMULATION LOOP

whi le(vehicle.conmand.condi tion != IXTI)

Get conmands (if any) from navigator. Consnands are all sent
or none are sent so no information is needed as to which value
is which.

if( receiver has data( &cardriver ))I

read...integer(&cardriver, &vehicie.comnand.condi tion);
while( !receiverhasdata( &cardriver ) ) /*printf('1")*/;
readj- nteger(&cardriver, &vehicle.convnand.brakepedal;
while( !receiver_has~data( &cardriver ) ) I*printfC'2")*/;
read..integer(&cardriver, &remotejnousex);
while( lreceiver~hasdata( &cardriver ) *printf("3")*/;
read..float(&cardriver, &cmdspeed);

Report all status information to navigator every cycle.

write float(&cardriver , &vehicle. state _vector[l]);
while( !sender - sj-ree(&cardriver) ) printf("b"):
write float(&cardriver, &vehicle. state -vector[2]); N
write float(&cardriver, &vehicte.state-vector[3]) ;
write foat(&cardriver, &vehicle.situation.distance_ traveled);
writejinteger(&cardriver, &vehicle.conmand.condi tion)I;
wri tejinteger(&cardriver. &vehicle.coninand-brakepedal )
write~integer(&cardriver. &vehicle. situation. lightcolor):

1* white loop *f%

/* main *

Figure 5.7 Synchr-onous Write /Asynchronous Read

48

%%



senderis_free call will return FALSE. This often occurs when there is a delay by the

client in connecting to the server (the display station here). If there is a good connection,

TCP/IP will accept and buffer all input. No other "busy wait" calls are needed. The other

side of the communication is shown in Figure 5.8.

(3) Disconnection. Termination, with a deletemachinepath call for

each path opened, is mandatory. If not performed, the sockets (and shared memory

segment on System V UNIX machines) will not be returned to the system. Problems26

may then occur on the next run. Figure 5.9 is an example termination when multiple

paths have been opened [Ref. 11].

2. Lisp Machines

All necessary functions are contained in a single file. This file must be loaded

before use. Figure 5.10 is an example. A Lisp machine is always a client and is started

second. Figure 5.11 illustrates the message returned with a successful connection.

Unsuccessful connections "hang" and return nothing.

a. Connection -"

The address of the server and the ports it is using must be specified.

Figure 5.12 shows the ports specified as part of the loaded file. When using the older TI

Explorer functions, the addresses are specified in the same way (see Figure 4.5) and then

the machine desired is requested by number 27 (shown in Figure 5.13). When using the

stream-based functions, the addresses are not specified by the user at all. The network

tables are accessed, by host name, through the select-host function provided (shown in

Figure 5.14). Once the instance of conversation-with-iris flavor has been completed

26 See Tables 5.1 and 5.2

r A throwback to connection only with different IRIS machines.

49



main(argc,argv)

while(condition DONE)

Receive all status informiation from car every cycle.

while( !receiver has data( &car ) ) '
read-float(&car, &cy); "
while( !receiver has-data( &car ) ) ;%i

read_float(&car, &cx); '
while( !receiver-has-data( &car)
read_float(&car, &velocity);

while( !receiver_has_data( &car ) )
read_float(&car. &rdistance);
while( !receiver-has-data( &car ) )
read_integer(&car, &condition);

while( Ireceiver-has-data( &car ) ) ;
read_integer(&car. &brakeposition);
while( !receiver has data( &car ))
read_integer(&car, &lightcolor);

Send commands (if any) to car. Commands are all sent
or none are sent so no information is needed as to which value
is which.

if(anythinghas-changed)

II

anything_has-changed = FALSE;
write in¢€ J . &cond;tion);
while( !sender is free( &car ) )printf("a")

write integer(&car, &brakeposition);
while( !sender is free( &car ) )printf("b") let
wr it e -integer(&car. 8anousex);
while( !sender Tis -free( &car ) )printf("c") ;
write-float(&car. &cmdvelocity);

} /* if(anything has changed) *

S/* while *

.

m/* main .r
Figure 5.8 Reciprocal Synchronous Read Asynchronous Write

*************************************50*



deletemachinepath(&TI);
de I e ternachinepat h(&SYv3)
deletemachinepath(&S dv1);

deletemachinepath(&S44)

exit( )

Figure 5.9 Connection Termination

this is the cormunication package
(load "irisflavor")

Figure 5.10 Loading Lisp Flavor

"A conversation with the iris machine has been established"

Figure 5.11 Lisp Connection Message

II.

(defvar *irisl-portl* 1027) ; this is the send port
(defvar *irisl-port2* 1026) this is the receive port

Figure 5.12 Setting Port Numbers with defvar N

get the network going
(iris I)
(setq *battle* (make-instance 'conversation-with-iris))
(if (y-or-n-p "start networking ?") (send *battle* :start-iris))

Figure 5.13 Specifying Server in Lisp

51

p..



(select-host iris2)

Figure 5.14 Specifying Server by Name in Lisp

r.%

with port numbers and host addresses, the connection is established with the method

:start-iris, see Figure 5.13.

b. Program Use

The method :get-iris returns with the object sent by one message. The

method (:put-iris object) sends the object as one message. Figure 5.15 illustrates both.

Note how methods are added to flavor conversation-with-iris to simplify the

application interface even further. [Ref. 11]

c. Disconnection

Disconnection is accomplished with the method :stop-iris, shown in

Figure 5.16.

C. BROADCAST

Only UNIX-based machines support our broadcast protocol at this time. It is a

unidirectional protocol, but nothing prevents the establishment of two unidirectional

channels in opposite directions. Using two broadcast channels to emulate a direct

connect channel, however, loads all other machines on the network by requiring every

other machine to process each message. It is also less reliable. Broadcasting is good for

sending status information to many other machines, as long as those machines can

tolerate missing reports.

1. Similarities With Direct Connect Protocol Use

Using the broadcast protocol is similar to using the direct connect protocol.

The same functions are used in the same way. Each connection must set aside space as

52

..,.

%S



: definitions:

object: "n" name: character "1 "5"
; ,x x coordinate: real

y y coordinate: real
; ,z z coordinate: real
; spd speed: real speed of vehicle -10.00 to 25.00
; dir direction: real compass dir in degrees from GN

; in lisp ("n" (x y z spd dir))

;;; get an object in graphics environment (defined as above)

(defmethod (conversation-with-iris :object)

(makeobj
(send self :Set-iris)
(send self :get-iris)
(send self :get-iris)
(send self :get-iris)

(send self :get-iris)
(send self :get-iris)

; vision returns a list of objects in the tank's field of vision (lOOm radius)
;;; this is effectively an association list

(defmethod (conversation-with-iris :vision)
(tank)

(let ((field nil) S
(n-objects 0) )
(progn (send self :put-iris "V")

(send self :put-iris tank)
(if (equal "V" (send self :get-iris))

(progn (setq n-objects (send self :get-iris))

(dotimes
(x n-objects field)
(setq field (cons (send self :object) field)) ) )

(progn
(print "iris did not respond to the vision conmand sent from )
(princ "tank ")
(princ tank) ) ) ) ) ) .

Figure 5.15 Application Communication in Lisp •

in Figure 5.4. The sane criteria for using a specific machinepath call apply (see Table

5.3). The same communications functions are available as in Table 5.4. Each

connection must be terminated as in Figure 5.9.

53

%
SC- " - -" " ." _r



(if (y-or-n-p "stop iris connection 7) (send *battle* :stop-iris))

Figure 5.16 Termination of Communications in Lisp

2. Differences With Direct Connect Protocol Use

a. Application Setup

The broadcast protocol is not directly modeled as a server/client

relationship. The broadcaster broadcasts to whomever is prepared to receive. The

receiver must be ready and so must be started first. Since the broadcaster is more similar

to the server in a server/client model, this connection order seems exactly backward. No

error will result if the broadcaster starts first, messages will simply not be received. The

receiver message is shown in Figure 5.17. The broadcaster message is shown in Figure

5.18. When a direct connect channel is also required between the same two machines,

achieving proper startup order is easy. Establish the direct connect channel first, then the

soon-to-be broadcasting process sends a message telling the receiver to start up. Once

started, the receiver process sends a message permitting the broadcaster to start.

ready to receive from broadcaster name

Figure 5.17 Normal Receiver Response

Waiting to broadcast

Figure 5.18 Normal Broadcaster Response

54



b. Coding Practices ,

The parameters to the machinepath family of functions are used

differently for the broadcast protocol. All are required to be present, but some are

ignored (see Table 5.5). Since a broadcast channel is unidirectional, the receivetype

application calls are meaningless to the broadcaster (the receiverhasdata call always

returns false). The send type application calls are meaningless to the receiver (the

sender_is.fee call always returns false).

D. SUMMARY

Using the same functions, an application can either broadcast or directly connect to

another machine. The same steps of setup, connection, use, and termination are common

to both protocols. Care must be taken in the timing of the two (or more) machines setup. -

After that, an application merely reads or writes data.

5,



Table 5.5 MACHINEPATH PARAMETERS

Parameter Function
machinepath dvnamicmachinepath dvnamicmachinepaths

Number of channels that could
be created by application. This

nummachines N/A includes both DIRECT CON-
NECT and BROADCAST chan-
nels.

Arbitrary integer. Should be different than another
segmentnum user's application.

Only first call's value used.
DIRECT CONNECT and BROADCAST (receiver

. only): Name of machine to connect to. 0
BROADCAST (broadcaster only): Required but ig-
nored
DIRECT CONNECT: Number (0-3076) of port to be
used to send to other machine.

sendportnum BROADCAST (broadcaster only): Number (0-3076)
of port to be used for broadcast.
BROADCAST (receiver only): Required but ignored

DIRECT CONNECT: Number (0-3076) of port to be
used to receive from other machine.
BROADCAST (broadcavter only): Required but ig-receiveportnum nored

BROADCAST (receiver only): Number (0-3076) of
port to be used for broadcast.

"server": Create DIRECT CONNECT channel
as a server.

"client": Create DIRECT CONNECT channel
as a client.server%

"broadcast": Create BROADCAST channel as a
broadcaster.

"receive": Create BROADCAST channel as a
receiver.

instructure Address of Machine structure created to hold channel
information.

Amount of space to be used for
freespace N/A dynamic memory allocation.

Only first call's value used.

56

' ,o'%



VI. PERFORMANCE

A. INTRODUCTION

We look at the size of packets from our protocols. We also look at the effect of real

applications on the network. We try to do this for both direct connect and broadcast

protocols. However, no application making good use of broadcast protocols exists.

Hence, we used a direct connect test application and replaced the channel with two

broadcast channels.

B. DATA COLLECTION

The LANalyzer* EX 5500 network analyzer was used to gather Ethernet statistics.

Version 2.0 of the software was used. The LANalyzer 5500 is a COMPAQ PORTABLE

II** with a coprocessor board installed. The coprocessor board has an Intel 80286 CPU,

an Intel 82586 LAN coprocessor, and two MBytes of memory. It performs packet

collection, packet filtering, and network statistics calculation. The COMPAQ PORTABLE

II processor handles user software control, screen updating and disk I/O. [Ref. 29]

Samples were taken while direct connect applications were running on iris2 and

iris3. To compare direct connect protocol with the broadcast protocol, test programsVS:

were used 28. Table 6.1 summarizes the information collected. These programs send a

character string, an integer, and a floating point number in a rotating sequence. The

messages are either sent to the machine specified on the command line or are broadcast

to all machines on the local network but only received from the machine specified.

LANalyzer is a registered trademark of Excelan. Inc.

COMPAQ PORTABLE II is a tradmark of the COMPAQ Computer Corporation.

2R See programs prog c. prog2.c. gprog c, and gprog2.c in Appendix D.

57

VS ' '.'3' ';_,-,-.-,-,.,- '. -.-- ,- .'.'- ," . . -. . -- . -. ." '. ----- '. .- - .". . . -,"- . -'. ." . ." - ; - . . .



Ji.

Table 6.1 DIRECT CONNECT VERSUS BROADCAST STATISTICS

Direct Connect Broadcast
Run Number Ave Max Number Ave Max

of Packet Test of Packet Test
Number Size Load Packets Size Load

Packets (Iytes) (%) PaIkets (bytes) (%) 1",
1 1031 91 .10 9498 69 1.0 -

2 1047 111 .05 9860 69 1.0
3 465 96 <.05 4000 68 1.0

4 698 95 .05 2556 68 1.0
5 334 103 .10 1262 68 1.0

The visual simulation application measured was a modified version of the driving

simulator [Ref. 7]. Table 6.2 summarizes the information collected. This data was

taken during the day29. The application's communication code is shown in Figure 5.7

and Figure 5.8. One trip around the track took approximately five minutes. Seven

messages are sent every cycle to report status. Four messages are sent in the opposite

direction, as required, to control the car. One circuit was driven, on autopilot, for each

test run. There were about 500 cycles per test. Approximately 3600 messages were

generated per test. The number of packets sent was less than half of this. The apparent

discrepancy exists for two reasons. First, each packct sent also generates an

Table 6.2 APPLICATION NETWORK USE STATISTICS L

Run Number Average Peak Peak Average
of Packet Network Test Network

Number Size Load Load Load
Packets (bytes)

1 3747 89 13 .10 .5
2 3297 89 11 .15 1.0
3 4152 89 15 <.05 .5
4 2848 89 17 .15 .9
5 22830 89 17 .10 .3

2" At night, with less competition for network resources, the results were sirnr.

58

%I



0

acknowledgement packet in return. By acknowledging each packet, the stream socket

guarantee of delivery and proper sequence is met. Second, after the first packet

(containing the first message) is received, the remaining three or six messages are

inmneiately sent. The receiving process has often not yet handled the first one. The

remaining messages are combined into one and all are read as one block. This reduces

the interchange to a typical total of four packets per cycle, two with data and two for

acknowledgement. Similarly, four packets are usually generated whenever the navigator
process issues a command sequence to the car.

An evaluation of a five-workstation application [Ref. 11] was also made. This

application used three Symbolics (syml, sym3, and sym4), expl, and iris2 to perform its

tasks. Statistics were similar to the other application, but the Symbolics irisflavor.lisp 3 0

exhibited some problem behavior. It sent three packets for every message. The first

packet contained the type field only. The second packet contained both the type field

and the length field. The third contained the entire message. If a second message

immediately followed the first, three more packets were sent, each adding one field to the

previous packet. Only one acknowledgement was received, as all packets in a group had

the same identification number.

C. DISCUSSION

Attempting to use broadcast protocol with the simple test programs failed. One

problem encountered was overflow of the sending buffer within the TCP/IP layers. The

rapidity of attempted transmission was the cause. Higher network loading exacerbated

the problem. When the test application was slowed down with printf calls (and the

output redirected into a file) the buffer could keep up with sending requests. Using
• .4

30 See Appendix C

59



-7

broadcast protocol within a graphics display loop should pose no problems unless

numerous data elements are transmitted at one time.

Without acknowledgement packets, broadcasting put fewer packets on the network

than did the direct connect protocol. When overall load was haevy, some were lost. This

poses a serious problem for visual simulation applications. Without an elaborate

application-level protocol, the receiving process will never know what was intended to

be sent. Since only one data object is transmitted at a time, labeling the data objects is

difficult. All that is available is to alternately send different types and, after checking

the type received, make a determination of the likely intent of the sending process. If a

block of data, containing different types, could be sent as a single message, the decoding

problem would become one of simply sequence checking. Missing status packets can be

safely ignored in many situations. At most, a simple averaging algorithm can smooth

any discontinuities caused by a missing packet. Timestamping, with a virtual timestamp,

of each packet would eliminate the averaging requirement.

The Symbolics stream version is much less efficient, in terms of network

utilization, than is the Explorer's. It still functions correctly, with no noticeable delay.

As the amount of data to transmit increases, the Symbolics flavor will eventually have

noticeable performance degradation.

The interconection of five machines loads the network only slightly more than does

that of two. The limitation will be from the process swap overhead, not the network.

D. SUMMARY

The direct connect protocol sends fewer packets than messages. Half of the packets

sent are acknowledgements. These acknowledgements provide the reliability of the

direct connect protocol. The broadcast protocol sends one packet for each message.

These packets tend to be smaller than those for the direct connect protocol. Until a

60
4.



mechanism exists to bundle several messages into one broadcast packet, the broadcast

protocol is of small value.

.

4-!

. . .. i - 1 t- .. .. .



VII. CONCLUSIONS AND RECOMMENDATIONS

A. LIMIATIONS

There are two primary limitations. First, the Lisp and C functions differ at the user.

level. This was done to allow each to be used readily by programnmers "thinking" in their

respective language. We have found this to be confusing to students who are

inexperienced in both languages. Second, there is no simple means to transmit a block ofI

data or an entire file. Each data element, unless it is part of an array of characters, must

hesent separately. This was done to "hit a middle ground" between a complex

facility-printf function--and low-level system calls. As long as only the direct connect

protocol existed, this was only an annoyance. As discussed in Chapter 6, this is a

critically limiting factor for the broadcast protocol. ''

The port to BSD UNIX systems without shared memory and semaphores was not

completed. The socket handling aspects are portable, but the shared memory aspects are ".

interwoven throughout the system. The difficult part of the porting will be designing the '

message-passing protocol for the pipe between the application and the send and receive

".-i

processes, as discussed in Chapter 4. Other specific limitations include:,'

•no broadcast capability for Lisp machines '6,

no server capability for Lisp machines

" limited communication error handling-no signals are sent from the send or receive-"
processes to the application process if they encounter problems "'

" limited read/write error handling-a read or write of the wrong type will be .
attempted and usually produce garbage '

" no out-of-band capability' ..

" Symbolics iris-flavor.lisp creates three packets per message",

6.

62 ..

/

('..' e ". ' -l*" *'-'t, 
€

€ -- , ", . .,, ." €'.it" ,,' ,e ", , .. , . €.." . .t ,'. . ."-." .* ,', * .' ., Z .- .- . .- %" "" "/f." "€" .- "." **""."' "" ..-



B. FUTURE RESEARCH AREAS

Implementation of the missing structure data type is one key area in which more

work could be done. The most straight-forward solution to this would be to add -,-

messages to the send section of the shared memory array without signalling the send

process to send it until the entire block was ready. Such a solution eliminates any need to

change the receiving functions at the cost of either an additional sending function or an

additional parameter to the existing send functions. The additional send function would

be a push function and the existing send functions would be modified to never signal the

send process to send. That would be left to the new push function. Adding a parameter

to each send function would allow any send function to push. While in some respects

simpler, changes to any application sending a block of data would have to carefully

monitor which send function actually is pushing.

Creation of a Lisp flavor that mimics the UNIX functions would prove useful to C

programmers who find a need for Lisp modules in their visual simulation. Adding server

and broadcast capabilities would increase the applicability of the protocols to future

visual simulation projects. Functions to break complex Lisp objects into simple ones and

then combine these into a single message are necessary for the broadcast protocol. The

Symbolics version should be corrected to send a packet only at message boundaries.

C. SUMMARY AND CONCLUSION

The routines described herein have already proved useful to researchers at the Naval

Postgraduate School. With Ethernet loading never exceeding one percent, these routines

are efficient enough to use without concern. With the additions mentioned above, the %

goal of an easy-to-use yet powerful system will be reached.

63

1:X•



APPENDIX A - IRIS MODULE DESCRIPTIONS

1. io-single.c

a. Calling Protocols

This module contains functions that are intended for the application's use and

functions that are used exclusively by them. The parameters for externally accessible

functions are described below.

i. number received S

number_received( instructure

Machine *instructure; /* includes
char *instructure.segment a pointer to the shared segment*/

ii. read character 0

read character(instructure,character out)

Machine *instructure; /* inludes
char *instructure.segment a pointer to the shared segment */

char *character out; /* pointer to output character */

iii. read characters

readcharacters( instructure,outarray,arraysize)

Machine *instructure; /* includes
char *instructure.segment a pointer to the shared segment */

char outarray[]; /* output character buffer */ 0
int arraysize; /* the number of characters to be returned */

iv. read float

readfloat( instructure,floatout)

Machine *instructure; /* includes
char *instructure.segment a pointer to the shared segment */ S

float *float out; /* pointer to output float *f

v. readinteger

read integer(instructure,integer out)

Machine *instructure; /* includes S
char *instructure.segment a pointer to the shared segment /.

int *integer-out; /* pointer to output integer /

64

i,



io singlexc

vi. received type

char received-type( instructure

Machine *instructure; /* includes
char *instructure.segment a pointer to the shared segment
*/

vii. write-character

writecharacter(instructure,character in)

Machine *instructure; /* includes
char *instructure.segment a pointer to the shared segment
int instructure.sendsem the semaphore to the sender */

char *character in; /* pointer to input character */

viii. write-characters

write characters(instructureinarray,arraysize)

Machine *instructure; /* includes
char *instructure.segment a pointer to the shared segment
int instructure.receivesem the semaphore to the receiver. */

char *inarray; /* input character buffer */
long arraysize; /* the number of characters input */

ix. write float

write float(instructure,float_in)

Machine *instructure; /* includes
char *instructure.segment a pointer to the shared segment ,
int instructure.sendsem the semaphore to the sender */ S

float *float_in; /* pointer to input float */

x. write_integer

writeinteger(instructure,integer_in)

Machine *instructure; /* includes
char *instructure.segient a pointer to the shared segment
int instructure.sendsem the semaphore to the sender */

int *integerin; /* pointer to input integer */

AS
%

65q



I

iosingle.c

b. Code and Description

**************************************************************************** 
*

* * I

* TITLE Inter-Computer Connunication Package *

* NIIXJLE io single.c *

* VERSION: 3.0 *

* DATE 15 December 1987. •

* AUTIHOR Theodore H. Barrow *

4* * t

* HISTORY: *

* VERSION: 1.0 *
* * I

* DATE : 27 May 1987 *
* * I.

* AILTHOR : Theodore H. Barrow *

* DESC. : Originally part of support.c. Contains the documented read *

* and write calls for use by the application progranmer. *

* VERSION: 2.0 *

* DATE : 21 October 1987 * ,

* AUTHOR Theodore H. Barrow *

* DESC. Modified read routines to use a global array to manage the * 4
* possibility of a partiil message receipt. *

* VERSION: 3.0 * za * ,

* DATE : 15 December 1987 * 'tat

* AI-THOR Theodore H. Barrow *

* DESC. : Modified read routines to use part of a buffer set instead of *

* the global array to manage the reception of a partial message.* r

* RECORD OF C4PAfrES *

*Version* Date * Author * * Affected *Reqd*

* * Change Description * Modules *Vers*

* * * * * * * I

***************************************************************************** a, ,"t

NO

66 ':"
l.op

'
' e.,t2,2,'. e d,€7 ,2,-,.,€2,',.%" .;' .'C'.'2,''.J,. .¢" "'.- .'€"242¢&''. .'.'.".€';" " "-''



V

io.single.c

#include "shared.h" -
#include "gl.h"

/* The following routine copies a character into the shared segment.
It puts the type CIARACTERTYPE in the first byte and the

length 0001 into the next four bytes.
It then puts the total size at the top of the shared segment.

It then sends a wakeup to the sender program.
It uses an input structure since called by main program

write character(instructure,character_in)

Machine *instructure; /* includes

char *instructure.segment a pointer to the shared segment

int instructure.sendsem the semaphore to the sender *1

char *character-in; /* pointer to input character */

int msgsize = 5 + CIARACTESRSIZE; /* size of message */ A

char *senderstart = instructure->segment + SEM)EROFFSET; '5

/* the + 9 is to skip over the first 4 bytes for the size

of the shared memory data and the 5 bytes of header information *I

char *datastart = senderstart + 9;

long *sentlength = (long *)instructure->segment + WSENDEROFFSET;

/* insert the type code */
*(senderstart + 4) = CHARACTER-TYPE;

/* insert the length IN BYTES of the input data 5/

sprintf((senderstart + 5), "%04d", CHARACTERSIZE);

/* move the data bytes 5/

memcpy(datastart, character-in, -IARACTERSIZE);

/* copy out the size of the data from the shared segment top *1
*sentlength = msgsize; t

/* at this point, we send a wakeup to the sender program,
indicating that he can reuse the shared segment.

V(instructure->sendsem);

/* write character */

67 '

.0..
S%, 

~ ~%%~?V%- -

*.5 ~o'A



iosingle.c

/* The following routine converts an integer to a string and copies it
into the shared segment.

It puts the type INTEGERTYPE in the first byte and the string length
(in bytes) as an integer (in string format) into the next four bytes.

It then puts the total size at the top of the shared segment.
It then sends a wakeup to the sender program.
It uses an input structure since called by main program

*1

write_integer(instructure,integerin)

Machine *instructure; /* includes

char *instructure.segment a pointer to the shared segment

int instructure.sendsem the semaphore to the sender */ N

int *integer in; /* pointer to input integer */- a-

char integer-string[201; /* string for integer conversion */

int length; /* length of integer string */

int msgsize; /* size of message */

char *senderstart = instructure->segment + SENDEROFFSET;

/* the + 9 is to skip over the first 4 bytes for the size
of the shared memory data and the 5 bytes of header information */

char *datastart = senderstart + 9;

long *sentlength f (long *)instructure->segment +'WDEMEROFFSET; n.
/* convert integer to string /
sprintf( integer-string,"%d', *integerin );

/* find length of integer string and thus message */
length = strlen( integer string );
msgsize = 5 + length;

/* insert the type code */

*(senderstart + 4) = INTEGERTYPE;

/* insert the length IN BYTES of the input data */ -

sprintf((senderstart + 5), "%04d", length);

/* move the data bytes */
memcpy(datastart, integer-string, length);

/* copy out the size of the data from the shared segment top */
*sentlength = msgsize;

/* at this point, we send a wakeup to the sender program,
indicating that he can reuse the shared segment.

V(instructure->sendsem);

/* write-integer */

68
%t



iosingle.c

/* The following routine converts a float to a string and copies it
into the shared segment.

It puts the type FLOATTYPE in the first byte and the length
(in bytes) as an integer (in string format) into the next four bytes.

It then puts the total size at the top of the shared segment.
It then sends a wakeup to the sender program. N
It uses an input structure since called by main program -'

writefloat(instructure,floatin)

Machine *instructure; /* includes

char *instructure.segment a pointer to the shared segment

int instructure.sendsem the semaphore to the sender */

float *floatin: /* pointer to input float */

char floatstring[301; /* string for float conversion */

int length; /* length of float string */

int msgsize: /* size of message */

char *senderstart = instructure->segment + SENMEROFFSET;

/* the + 9 is to skip over the first 4 bytes for the size
of the shared memory data and the 5 bytes of header information */

char *datastart = senderstart + 9:

long *sentlength = (long *)instructure->segment + WSEIMEROFFSET; I

/* convert float to string */
sprintf( floatstring, "%f". *float in );

/* find length of float string and thus message */
length = strlen( floatstring );
msgsize = 5 + length;

/* insert the type code /f
*(senderstart + 4) = FLOATTYPE;

/* insert the length IN BYTES of the input data /
sprintf(tsenderstart + 5), "%04d", length);

/* move the data bytes /
memcpy(datastart, float_string, length);

/* copy out the size of the data from the shared segment top */
*sentlength = msgsize;

/* at this point, we send a wakeup to the sender program.
indicating that he can reuse the shared segment.

V(instructure->sendsem):

/* writefloat *1

69

%



io single.c

/* This routine returns the type of data received. *f

char receivedtype( instructure )

Machine *instructure: /* includes

char *instructure.segment a pointer to the shared segment*/

II

return( *(instructure->segnent + RECEIVEROFFSET + 4) )

II

-

:%

.7



io-singlexc

/This routine returns the number of data i tems received. ~
number _received( instructure

Machine 4 instructure; /4. includes

char 4 instructure.segment a pointer to the shared segment 1P
4

int temp~int;

char *protocolhold = instructure->segment + PRO'IOCOLIJJLDOFFSE';

long 4 partreceived = (long *)protocolhold:

long 4 receivedlength = (long 4 )instructure->segment + VW.ECEIVEROFFSET:

char 4 receiverstart = instructure->segnent + RECEIVEROFFSET;

/* check if only part of protocol information received *

if( *receivedlength < 5)

/move data received (as well as length field) to holding area ~
memcpy( protocoihold, receiverstart, *receivedlength + 4 )

/* get next message(s) */
free _ receiver(inistructure->segment);
V(instructure->receivesem):
while( receiver _is _free(instructure->segment) )/* wait ~

/* copy rest of protocol data into holding area ~
memcpy( (protocolhold + 4 partreceived + 4), (receiverstart + 4),

(5 - .partreceived) )

1* copy protocol data into holding area ~ .
memcpy( protocolhold, receiverstart, 9);

/4. initialize 4 partreceivtd so it can be used later ~
*part received = 0;

/4. determine the length of the received integer string and thus meqsage ~
sscanf( prcotocolhold + 5, "%d" . &temp-int )

switch( 4 (protocolhold + 4)

case GiARACTERTYPE:e
return( 1I)
break.

case INTEGERTYPE:
return( I )
break:

c a qe FLOATTYPE:

b reak:
c a se CHARACTERARRAY'I YPE:

return( temip.int/HARACERSIZE:

case INTEGERARRAYTYPE:
return) temp-int/INTEGER_ SIZE)
r ea k

ciqe FLOATARRAYTYPE:
r etir ni Iempint/ FLOAT_ S IZE

/'* number _received *

71



io single.c

/* The following routine returns a character from the shared segment.
It fr-es the receiver side of the shared segment if it is empty.
It then sends a wakeup to the receiver program.
It uses an input structure since called by main program.

*/

read character(instructure,character _out) 
N

Machine *instructure; /* includes

char *instructure.segment a pointer to the shared segment *

char *characterout; /* pointer to output character */

/* temporary storage for move of received data or for protocol information
when partial receipt */

char temp[LARGESTREAD;

char *protocolhold = instructure->segment + PROIOCOLDOFFSET

/* first four bytes of holding area as integer */
long *partreceived = (long *)protocolhold;

int msgsize = 5 + CHARACTERSIZE; /* size of message */

char *receiverstart = instructure->segment + RECEIVEROFFSET;

/* the + 9 is to skip over the first 4 bytes for the size
of the shared memory data and the 5 bytes of header information */Q

char *datastart = receiverstart + 9;

long *receivedlength = (long *)instructur, ->segment + VRECEIVEROFFSET;

/* check if first part of protocol information is missing */
if( *partreceived == 0 )

/* check if only part of protocol information received */

if( *receivedlength <= 5)

/* move data received (as well as length field) to holding area */
memcpy( protocolhold, receiverstart, *receivedlength + 4 ); 5.,

/* get next messageks) */

free _ receiver(instructure->segment);
V(instructure->receivesem):
while( receiver is free(instructure->segment) ) /* wait */

/* reset msgsize and datastart to correspond to partial receipt "1
msgsize -= *partreceived; V
datastart - *partreceived;

/* move the bytes */
memcpy(character _out, datastart. CQIARAC'ERSIZE):

/* make buffer ready for next read / l
reset buffer( receivedlen g th. msgsize, instructure, datastart r t

CHARACTER_SIZE, partreceived, receivetstart );

/* read-character */

,It
72

-2.
• :.'', "" -""'"-."." ,"."-" . . -... ";' """".- " ..- .: ../: ::.5,::..5 ..< : .5.:i5:,. . ,



io-single.c

/* The following routine converts a string in the shared segment
into the returned integer.

It frees the receiver side of the shared segment if it is empty.
It then sends a wakeup to the receiver program.
It uses an input structure since called by main program.

readjinteger(instructure integerout) 1

Machine *instructure: /* includes p

char *instructure.segment a pointer to the shared segment */

nt *integer-out: /* pointer to output integer */

char integer-string[LARGESTREAD]; /* string storage for received data */

char *protocolhold = instructure->segment + PROTI.XL-I.DOFFSET;

/* first four bytes of holding area as integer /l
long *partreceived = (long *)protocolhold;

int length; /* length of integer string read */

long segmentlength; /* length of data of partial massage */

int msgsize: /* size of message */

char *receiverstart = insiructure->segment + RECEIVEROFFSET: •

/* the + 9 is to skip over the first 4 bytes for the size
of the shared memory data and the 5 bytes of header information */

char *datastart = receiverstart + 9;

long *receivedlength = (long *)instructure->segment + V#RECEIVEROFFSET; %

/* determine proper protocol info and reset variables if necessary */
get-protocol( protocolhold, partreceived. receivedlength, receiverstart,

instructure, &length, &nsgsize, &datastart );

/* check if only part of data has been received */ ft'

if( *receivedlength < msgsize )

get-data( &segmentlength, receivedlength, partreceived.
integer-string, &datastart, &nsgsize, I%.
receiverstart, instructure, &length);

/* convert to string */
integer-string[segmentlength + msgsizel '\O';

else

! move the integer string bytes */
memcpy(integer-string, datastart, length):

/* convert to string */
integer-string[length] '\O'; -

/* convert the received string to an integer */

sscanf( integer-string, "%d", integer-out ):

/* make buffer ready for next read */
resetbuffer( receivedlength, msgsize, instructure, datastart, length.

partreceived, receiverstart ): t

/* read_integer /l

73

-0i

ftft.*. ~*f~ft"' ft f



io singlec

/* The following routine converts a string in the shared segment
into the user supplied float.

It frees the receiver side of the shared segment if empty.
It then sends a wakeup to the receiver program.
It uses an input structure since called by main program. S

readfloat(instructurefloatout)

Machine *instructure; /* includes

char *instructure.segment a pointer to the shared segment */

float *float_out; /* pointer to output float */

char floatstring[LARGESTREAD ; /* string storage for received data */

char *protocolhold = instructure->segment + PROTDCO.OLDOFFSET;

/* first four bytes of holding area as integer */
long *partreceived = (long *)protocolhold;

int length' /* length of float string read */

long segmentlength; /* length of data of partial massage */

int msgsize; /* size of message */

char *receiverstart instructure->segment + RECEIVEROFFSET; S

/* the + 9 is to skip over the first 4 bytes for the size
of the shared memory data and the 5 bytes of header information %/

char *datastart = receiverstart + 9; -r,

long *receivedlength = (long *)instructure->segment + VRECEIVEROFFSET;

/* determine proper protocol info and reset variables if necessary */
get-protocol( protocolhold, partreceived, receirvedlength, receiverstart.

instructure, &length, &msgsize, &datastart ):

/* check if only part of data has been received */ * -
if( *receivedlength < msgsize )

getdata( &segmentlength, receivedlength, partreceived,
float_string, &datastart, 8onsgsize,
receiverstart, instructure, &length);

/* convert to string */
float.string[segmentlength + msgsize] = '\0';

else
e 4

/* move the float string bytes */
memcpy(float_string, datastart, length);

/* convert to string *
float-string[length = '\ ":

/* convert the received string to an float */

sscanf( float_string, "%f" float-out );

/* make buffer ready for next read */
reset_buffer( receivedlength, nisgsize, instructure, datastart, length,

partreceived, receiverstart ;

/* readfloat */

74



io single.c

/* The following routine copies characters from an array
into the shared segment.

It puts the type CHARACTER_ARRAY_TYPE in the first byte and the
array length (in bytes) as an integer into the next four bytes.

It then puts the total size at the top of the shared segment.
It then sends a wakeup to the sender program. .
It uses an input structure since called by main program

*/ .

write _characters(instructure,inarray,arraysize)

Machine *instructure: /* includes

char *instructure.segment a pointer to the shared segment e

int instructure.receivesem the semaphore to the receiver. /6

char *inarray; /* input character buffer */

long arraysize: /* the number of characters input */

int datasize = arraysize * CHARACTERSIZE; /* size of data field *f

int msgsize = 5 + datasize; /* size of message */

char *senderstart = instructure->segment + SENVEROFFSET;

/* the + 9 is to skip over the first 4 bytes for the size
of the shared memory data and the 5 bytes of header information */

char *datastart = senderstart + 9:

long *sentlength = (long *)instructure->segment + MEMEROFFSET;
/* insert the type code */
*(senderstart + 4) =R CHARACTERARRAY TPE;

/* insert the length IN BYTES of the input data */ 'p..

sprintf((senderstart + 5). "%04d", (int)datasize);

/* move the data bytes */ 1
memcpy((datastart), inarray, datasize);

/* copy out the size of the data from the shared segment top */
*sentlength = 5 + datasize;

/* at this point, we send a wakeup to the sender program.
indicating that he can reuse the shared segment.

V(instructure->sendsem);

/* write _characters */

75,
% N A FL A K p N



Z7 -. ..L

io-single.c

/* The following routine copies bytes from the shared segment
into the user supplied array.

It frees the receiver side of the shared segment if it is empty.
It then sends a wakeup to the receiver program.
It uses an input structure since called by main program.

read characters(instructureoutarray.arraysize)

Machine *instructure; /* includes

char *instructure.segment a pointer to the shared segment */

char outarray[]: /* output character buffer */

int arraysize; /* the number of characters to be returned */

char *protocolhold = instructure->segment + PRO'YTOOI-LDOFFSET;

/* first four bytes of holding area as integer */
long *partreceived = (long *)protocolhold:

int length: /* length of character string read'!

long segmentlength; /* length of data of partial massage */

int datasize = arraysize * CHARACTERSIZE; /* size of requested data field */

int requestsize; /* size of message */

int msgsize = 5 + datasize; /* size of requested message */

char *receiverstart = instructure->segment + RECEIVEROFFSET;

/* the + 9 is to skip over the first 4 bytes for the size
of the shared memory data and the 5 bytes of header information */

char *datastart = receiverstart + 9:

long *receivedlength = (long *)instructure->segment + WRECEIVEROFFSET;

/* determine proper protocol info and reset variables if necessary */
get-protocol( protocolhold, partreceived, receivedlength, receiverstart,

instructure, &length, &nsgsize, &datastart );

/* check if all of data (or more) was requested */

if( length <= arraysize
4%

/* check if only part of data has been received */
if( *receivedlength < msgsize )

get_data( &segmentlength, receivedlength, partreceived,
outarray, &datastart, Amnsgsize,
receiverstart, instructure. &datasize ):

else

/* move the character bytes */
memcpy(outarray, datastart, length).

/* make buffer ready for next read */
reset _buffer( receivedlength, msgsize. inetructure, datastart, datasize,

partreceived, receiverstart

76

.NZ



io singlexc

elIse

/* move the bytes *
menhcpy(outarray, datastart. datasize);

/* make buffer ready for next read *
reset-buffer( receivedlength, msgsize. instructure, datastart, datasize,

parireceived. receiverstart )

/* read_ characters *

j.

.e %

%'

77'

0



io-single.c

/* These are various support routines used by several of the preceding
functions.

reset buffer(receivedlength, msgsize, instructure, datastart, datasize, .

partreceived, receiverstart)

long *receivedlength; /* first four bytes of receive part of shared seg */
*55

int msgsize; /* size of message read 5/

Machine *instructure; /* includes

char *instructure.segment a pointer to the shared segment

int instructure.receivesem the semaphore to the receiver. */

char *datastart; /* address data starts in receive part of shared seg */

int datasize; /* length of data part of message 5/

long *partreceived; /* length of message received in previous block */

char *receiverstart; /* address receive part of shared seg starts */

char temp(LARGESTREAD]; /* temporary storage for move of received data 5/

/* free the receiver segment if this is only message received */
if(*receivedlength == msgsize)

freereceiver(instructure->segment);

/* at this point, we should send a wakeup to the receiver program,
indicating that he can reuse the shared segment.

0/
V(instructure->receivesem);

else /* shift data forward in shared memory segment 5/

*receivedlength -= msgsize: %

memcpy(temp, (datastart + datasize), (LARGESTREAD - msgsize));

memcpy((receiverstart + 4), temp, (LARGESTREAD -msgsize));

/* reset *partreceived for next read */
*partreceived = 0:

/* reset-buffer 5/

78

V- -



io-single.c

getprotocol( protocolhold, partreceived, receivedlength, receiverstart,
instructure, length, msgsize, datastart

char *protocolhold: /* protocol holding area

long *partreceived; /* length of message received in previous block */

long *receivedlength: /* first four bytes of receive part of shared seg */

char *receiverstart: /* address receive part of shared seg starts */

Machine *instructure; /* includes

char *instructure.segment a pointer to the shared segment

int instructure.receivesem the semaphore to the receiver. /1

int *length; /* length of data field in message *.

int *msgsize; /* length of message */

char **datastart; /* address data starts in receive part of shared seg */

/* check if first part of protocol information is missing */ -'
if( *partreceived == 0 )

/* check if only part of protocol information received 5/

if( *receivedlength <= 5)

/* move data received (as well as length field) to holding area ./4

memcpy( protocolhold, receiverstart, receivedlength + 4 );

/* get next message(s) */
free _ receiver(instructure->segment);
V(instructure->receivesem);
while( receiver isjfree(instructure->segment) ) /* wait */ ;

/* copy rest of protocol data into holding area 5/

memcpy( (protocolhold + *partreceived + 4), (receiverstart + 4),
(5 - *partreceived) );

else

/* copy protocol data into holding area */
memcpy( protocolhold, receiverstart, 9);

/* initialize *partreceived so it can be used later 5/

•partreceived = 0; 1

/* determine the length of the received data string and thus message */ S
sscanf( protocolhold + 5, "%d", length ) -- ,
•msgsize = 5 + *length - *partreceived;

/* reset datastart to compensate for possible partial receipt */ 'c
5datastart -= *partreceived; -

/* get-protocol */

7
79@



iosingle.c

getdata( segmentlength, receivedlength, partreceived, stringarray,
datastart. msgsize, receiverstart, instructure, datasize )

long *segmentlength: /* length of partial data */

long *receivedlength: /* first four bytes of receive part of shared seg */

long *partreceived: /* length of message received in previous block */

char string-array[I; /* storage for incoming characters */

char **datastart: /* address data starts in receive part of shared seg *i

int *msgsize; /* length of message */

char *receiverstart; /* address receive part of shared seg starts */

Machine *instructure; /* includes

char *instructure.segment a pointer to the shared segment

int instructure.receivesem the semaphore to the receiver. 1

int *datasize: /* length of data field in message */

/* determine length of data that has been received */
*segmentlength = *receivedlength - 5 + *partreceived;

/* copy the first segment of data to holding array */ 0
memcpy( string-array. *datastart, *segmentlength );

/* reset msgsize and datastart to correspond to partial receipt *1
*msgsize -= *segmentlength + 5 - *partreceived; %
*datastart f receiverstart + 4;

/* get next message(s) */
free _ receiver(instructure->segment);
V(instructure->receivesem);
while( receiver_ is _free(instructure->segment) ) /* wait */ ;

/* cycle through as many messages as it takes ./ F
while( *receivedlength < *msgsize )

/* copy the next segment of data to holding array *1
memcpy( &string-array[*segmentlength], *datastart, *receivedlength ): •

/* reset msgsize and segmentlength to correspond to partial receipt *.
*msgs ize -= *receivedlength;
*segmentlength -= *receivedlength;

/* get next message(s) */
free _ receiver( instructure->segment
V(iistructure->receivesem): S
while( receiver is free(instructure->segment) ) /* wait */

/* copy the last segment of data to holding array *"
memcpy( &string-array[*segnentlengthl, *datastart. *msgsize I:

/* reset datasize to properly reflect last segment size /,
*datasize = *msgsize;

/* get data */" '

80

N



2. mpath.c

a. Calling Protocols

All functions in this module are meant to be accessible by the application.

These functions set up and tear down the communications path between two machines.

i. deletemachinepath

deletemachinepath(instructure)

Machine *instructure; /* structure to hold segment and semaphore info:
char *instructure.segmenr -- returned ptr to the shared segment.
int instructure.shmid -- returned system generated shared memn jd
int instructure.sendsemn -- the returned send semaphore.

We base it on the send portnumber.
int instructure.receivesem -- the returned receive semaphore.

We base it on the receive portnumber.

ii. machinepath

machinepath(segmentnum,mname~sendportnum.receiveportnum~server.instructure)

long segmentnum: /* the key to use for the created shared segment ~
char mname[]; /* machinename character s tring */
long sendportnum~receiveportnum; /* send and receive port numbers *
char server[]: /* this character string is either "client" or "server".

It indicates whether the sender/receiver should open
up as either a client or server. The first guy open
must be the server.

Mtachine *instructure; /* structure to hold segment and semaphore info:
char *instructure.segment -- returned ptr to the shared segment.
mnt instructureshmid -- returned system generated shared mni id
int instructure.sendsemn -- the returned send semaphore. 5

We base it on the send portnumber.
mnt instructure.receivesem -- the returned receive semaphore.

iii. dynamicmachinepath

dynamicmnachinepath)(segmnentnum,mname,sendportnum,receiveportnum,server.
instructure,freespace)

long segmentnum: f* the key to use for the created shared segment ~
cha r niname f I /* machinename character string */
long gendiportnum~receiveportnum; /* send and receive port numbers ~
char server[]: /* this character st ring is either 'cli ent' or "evr

It indicates whether the sender/receiver should open
*up as either a client or server. The first guy open

mu st be the server .

Machine 5instructure; f* structure to hold segment and semaphore info:
char 5 inst ructure. segment - - returned Pt r to the shared segment.
mnt instructureshmid -- returned systemn generated shared meni id
mnt instructure.qendsem -- the returned send semaphore.

We base it on the send portnunsber.
mnt instructure.receivesemn -- the returned receive semaphore.

We base it on the receive portnumbcr.

int freespace; /* amount of freespace desired for dynamic memory allocationIl
after this rout ine has been cal led. ~

.. A A



mpath.c

iv. dynamicmachinepaths

dynamicmach i nepa ths (nunnach i nes , segment num,niame, sendpor tnum. rece i vepor t num,
server.instructurefreespace)

int nunmachines: /* the maximum number of other machines to be attached *
long segmentnum: /* the key to use for the created shared segment *,1
char mname[]: /* machinename character string */
long sendportnumreceiveportnum; /* send and receive port numbers */
char server[]; /* this character string is either "client" or "server".

It indicates whether the sender/receiver should open
up as either a client or server. The first guy open
must be the server.*/

Machine *instructure; /* structure to hold segment and semaphore info: a
char *instructure.segment -- returned ptr to the shared segment.
int instructure.shmid -- returned system generated shared mem id
int instructure.sendsem -- the returned send semaphore. "

We base it on the send portnumber.
int instructure.receivesem -- the returned receive semaphore.

We base it on the receive portnumber.*/

int freespace: /* amount of freespace desired for dynamic memory allocation
after this routine has been called. */

b. Code and Description

• TITLE : Inter-Computer Comunication Package *

SMIXLE mpath.c *• *

* VERSION: 5.0 *

* DATE : 31 May 1988 ,

* AUIHOR : Theodore H. Barrow *

SHI STORY:

• ,TVERSION: 1 0 *

• DATE :6 February 1987 *

• A.l-~:R Michael J. Zyda *

• DESC. Contains routines machinepath and deletemachinepath for *
• link creation/removal at a high level of abstraction. *

• VERSION: 2.0 *

d * DATE :27 May 1987 *

* AIrTtOR : Theodore H. Barrow

• DESC. Converted to use a structure for ease of use. *

* VERSION: 3.0

* DATE : 21 October 1987 4.

* AtFIT-UDR : Theodore H. Barrow 4"

DESC. Added function dynamicmachinepath to allow dynamic memory *

82

S% %

A. AL Uk- f P_ _, L&t Lz 6 INL AsI



mpath.c
* allocation after communications link established. * P"

* VERSION: 4.0 *

* DATE : 15 December 1987 * I

* A-THOR Theodore H. Barrow *

* DESC. : Added function dynamicmachinepaths to allow use with multiple *
* links. NI:odified all creation routines to place sequence *

* nnumbers at end of connand line for send and receive processes.*

* VERSION: 5.0 *

* DATE :31 May 1988 *

* AUTHOR : Theodore H. Barrow *

* DESC. : Added broadcast and receive capability - one process spawned *

* RECORD OF CHANGES *

*Version* Date * Author * * Affected *Reqd*
* * Change Description * Modules *Verq*

* * * * *

''4

83

in

i ,%'



mpath.c

#include "shared.h" /* my special defines ~
#include <gl.h>

deletemiachiniepathinstructure)

Machine *iI1structure: 1* structure to hold segment and semaphore info:

char *jnstructure.segment -- returned ptr to the shared segment.

mnt instructureshmid -- returned system generated shared mem id

int instructure.sendsem -- the returned send semaphore.%

We base it on the send portnumber.

int instructure~receivesem -- the returned receive semaphore.
We base it on the receive portnumber.

/* kill the receiver process .

kill _re-ceiver(instructure->segment,instructure->receivesem);

1* kill the sender process.- */
kill _senider( instructure->segnent .instrtucture->sendsem.);

/* detach and delete the shared segment OPN
deletesharedsegnient(instructure->segment,instructure->shnid);

84 :%



mpath.c
/*

For airect connection, both sent; and receive procesies are spawned.
For broadcast, either send or receive process is spawned.
The machinepath routine performs the following:

(1) creates a shared segment.
(2) creates a send and/or receive semaphore based on the send and receive

port numbers.
(3) freesender(segment) and/or freereceiver(segment) Ad

(4) spawns off the send and/or receive processes.
system("send sharedseg# machinename port# server/client/broadcast O&"):
system("receive sharedseg# machinename port# server/client/receive O&"):

(5) the send and receive semaphores, the pointer to the shared segment,
and the id of the shared segment are placed in a structure of type
Machine that is declared in the calling program.

machinepath(segmentnummname,sendportnum,receiveportnum,server,instructure)

long segmentnum; /* the key to use for the created shared segment */

char mname[]; /* machinename character string */

long sendportnumreceiveportnum; /* send and receive port numbers */

char server[]: /* this character string is either "client", "server",
"broadcast", or "receive". If direct connection wanted,
it indicates whether the sender/receiver should open
up as either a client or server. The first guy open
must be the server. If broadcast wanted, it indicates
whether to open up as broadcaster or receiver.

*/

Machine *instructure; /* structure to hold segment and semaphore info:

char *instructure.segment -- returned ptr to the shared segment.

int instructure.shmid -- returned system generated shared meni id %

int instructure.sendsem -- the returned send semaphore.
We base it on the send portnumber.

int instructure.receivesem -- the returned receive semaphore.
./

IS
char *sharedsegment(); /* shared segment creation function */

int semtran(): /* semaphore creating routine. 5/

char temp[200], temp2[200]; /* temp character arrays */

/* create the shared segment */
instructure->segment = sharedsegment(segmentnum,MAXSHAREDSIZE.&instructure->shmid):

/* create the send semaphore. (unused if receiving broadcast messages) */
instructure->sendsem = semtran(sendportnum):

/* create the receive semaphore (unused if broadcasting messages) *
instructure->receivesem = sentran(receiveportnum)v

/* free the sender and receiver parts of the shared segment */
in it_ shared buffer(instructure->segment):

/* spawn off the sender process */

if( strcmp( server, "receive" ) 0 )
IS

85



mpath.c

/* add the start of the line, i.e. the program to run 4/

st rcpy(temp,SENLOCATIO'N).
strcat( temp," );

/* add the number of the sharedsegment in text */ P
sprint f(temp2."%d".instructure->shmid):
strcat(temp,temp2);
s t rcat ( temp,.. .. ) :

/* add on the machine name /4

strcat ( temp,mname);
strcat(temp," ");

/* add the port number */
sprint f(temp2,"%d",sendportnuina);
s t rcat( t emp, t emp2)
strcat(temp,"

/* indicate whether a server, a client, or a broadcaster 4/

strcat(temp.server);
strcat(temp," 0");

/* spawn off into the background */
strcat (temp. "&" )

/* spawn off the sender 4/

if( system(temp) ==-1 )
perror("SEND system call failed");

else

/* kill sender (which really doesn't exist anyway) so that the
sender is _free() call will always return FALSE.
A similar thing does not have to be done for receiver-hasdata()
in a broadcasting path since it will always return FALSE anyway 4/

kill-sender( instructure->segment, instructure->sendsem );

/* spawn off the receiver process */

if( strcmp( server, "broadcast" ) 0 )

/* add the start of the line, i.e. the program to run */
st rcpy( tempRECEIVELOCATION');
strcat(temp," ");

/* add the number of the sharedsegment in text */
sprir.tf(temp2,"%d",instructure->shmid);
s t rcat ( temp, t emp2) ;
strcat(temp," "):

/* add on the machine name */
st rcat ( tempmname);
a t rca t ( temp." ")

/* add the port number */
sprintf(temp2."%d",receiveportnum);
st rcat (temp. t emp2) ;
st rcat (temp.'

/* indicate whether a server, a client, or a broadcast receiver 4/

strcat (tempserver); %
st rcar( temp.' 0");

/* spawn off into the background */
q t rca t ( t emp,"&")

86



mpath.c

/* spawn off the receiver */
if( systenh(temp) == -1 )

perror("RECEIVE system call failed"):

,.'

J,

87

A -



-

mpath.c

For direct connection, both send and receive processes are spawned.
For broadcast, either send or receive process is spawned.
The dynamicmachinepath routine performs the following:

(1) creates a shared segment and attaches it to the main program virtualIN
space after an allocation of free memory space.

(2) creates a send and/or receive semaphore based on the send and receive
port numbers.

(3) free.sender(segment) and/or freereceiver(segment)
(4) spawns off the send and/or receive processes.

system("send sharedseg# machinename port# server/client/broadcast O&");
system("receive sharedseg# machinename port# server/client/receive 0&");

(5) the send and receive semaphores, the pointer to the shared segment,
and the id of the shared qeg, ment are placed in a btructurt of LypC
Machine that is declared in the calling program.

dynamicmachinepath(segmentnummname,sendportnum,receiveportnum,server.
instructure,freespace)

long segmentnum: /* the key to use for the created shared segment */

char mname[]: /* machinename character string */

long sendportnum,receiveportnum: /* send and receive port numbers */

char server[]: /* this character string is either "client", "server", S
"broadcast", or "receive". If direct connection wanted,
it indicates whether the sender/receiver should open
up as either a client or server. The first guy open
must be the server. If broadcast wanted, it indicates
whether to open up as broadcaster or receiver.

*/

Machine *instructure; /* structure to hold segment and semaphore info:

char *instructure.segment -- returned ptr to the shared segment

int instructure.shmid -- returned system generated shared men id

int instructure.sendsem -- the returned send semaphore.
We base it on the send portnumber.

int instructure.receivesem -- the returned receive semaphore.
We base it on the receive portnumber.

int freespace: /* amount of freespace desired for dynamic memory allocation

after this routine has been called. */

char *dynamicsharedsegmento); /* shared segment creation function */

int semtrano : /* semaphore creating routine. */

char temp[2001, temp2[200]: /* temp character arrays */

/* create the shared segment /
instructure->segment = dynamicsharedsegment(l.segmentnum.MAXSRAREDSIZE.

&instructure->shmid,freespace): P

/* create the send semaphore. (unused if receiving broadcast messages) *I
inst ructure->sendsem = semt ran (sendportnum)U

/* create the receive semaphore (unused if broadcasting messages) */
instructure->receivesem= semtran(receiveportnum):

88I

% % % N



mpath.c

/* free the sender and receiver parts of the shared segment %/
init sharedbuffer(instructure->segment);

/* spawn off the sender process */

if( strcmp( server, "receive" ) 0)

/* add the start of the line. i.e. the program to run
st rcpy( tempSEDLOCATIN);
strcat (temp." ");

/* add the number of the sharedregment in text /
sprintf(temp2,"%d",instructure->shmid);
st rcat(temp.temp2);
st rcat(temp." ");

/* add on the machine name

strcat (temp.mname)
st rcat(temp. " )

/* add the port number */
sprint f(temp2."%d".sendportnum);
st rcat (temp. temp2)
st rcat(temp, ' );

/* indicate whether a server, a client, or a broadcaster */
strcat(temp.server);
strcat(temp." 0&");

/* spawn off the sender into the background */
if( system(temnp) ==-1 )

perror("SEI"D system call failed");

else

/* kill sender (which really doesn't exist anyway) so that the
sender is free() call will always return FALSE.
A similar thing does not have to be done for receiverhasdata()
in a broadcasting path since it will always return FALSE anyway */

kill sender( instructure->segment, instructure->sendsem );

/* spawn off the receiver process */

if( strcmp( server, "broadcast" ) != 0 )

/* add the start of the line, i.e. the program to run */
st rcpy( temp.RECEIVELOCATION);
strcat(temp," "

/I add the number of the sharedsegment in text /
sprint f(temp2."%d". instructure->shmid);
s t rca t ( temp.temp2)
at rcat(temnp ..

/* add on the machine name */
.q t rca t ( t emp.niame ,
at rcat temp,"

/* a(td the port number /
sprint f(tenmp2. "%d",receiveportnum);
qt rcat (temp. temp2)"
at rcat( temp. )

/* indicate whether a server, a client, or a broadcast receiver */
t rcat(temp.server):

q t rca t t t ip." 0&" )

89

-AV



*~P. -- -~ PIP* ~ .

nipath.c

/* 7pawr off the receiver into the background *
if( system(temp) == -1L

perror("RECEIVE system call failed");

90 p

%t



mpath.c

/*
For direct connection, both send and receive processes are spawned.
For broadcast, either send or receive process is spawned.
The dynamicmachinepaths routine performs the following:

(1) creates a shared segment large enough for multiple attachments
and attaches it to the main program virtual space after an allocation
of free memory space.

(2) creates a send and/or receive semaphore based on the send and receive
port numbers.

(3) freesender(segment) and/or free_receiver(segment)
(4) spawns off the send and/or receive processes.

system("send sharedseg# machinename port# server/client/broadcast O&");
system("receive sharedseg# machinename port# server/client/receive O&"):

(5) the send and receive semaphores, the pointer to the shared segment,
and the id of the shared segment are placed in a structure of type
Machine that is declared in the calling program. I

dynamicmachinepaths(nuinachinessegmentnummnamesendportnumreceiveportnum.

serverinstructurefreespace)

int nunmachines; /* the maximum number of other machines to be attached */

long segmentnum; /* the key to use for the created shared segment */

char mname[]: /* machinename character string */

long sendportnum.receiveportnum; /* send and receive port numbers */

char server[]; /* this character string is either "client", "server",
"broadcast", or "receive". If direct connection wanted,
it indicates whether the sender/receiver should open
up as either a client or server. The first guy open
must be the server. If broadcast wanted, it indicates
whether to open up as broadcaster or receiver.

Machine *instructure: /* structure to hold segment and semaphore info:

char *instructure.segment -- returned ptr to the shared segment.

int instructure.shmid -- returned system generated shared mem id

int instructure.sendsem -- the returned send semaphore.
We base it on the send portnumber.

int instructure.receivesem -- the returned receive semaphore.
We base it on the receive portnumber.

*/

int freespace; /* amount of freespace desired for dynamic memory allocation
after this routine has been called. */

char *dynamicsharedsegmento): /* shared segment creation function */

int semtrano : /* semaphore creating routine. */

char temp[200], temp2[200]; /* temp character arrays */

static Boolean firsttime = TRUE; /* flag to detect multiple requests */

static int 9equencenum = 0: /* sequence number for receive/send 5/

Rtatic tnt totmachines: /* max attachments permitted /

/* check for first time called and establish max possible attachments */
if( firsttirne )

91



.%

mpath.c

t otmachines = nuninachines,
fi rst time = FALSE; r

-+ sequencenum:

/ check for violation of maximutm at tachments *
if( sequencenum >= totmachines

perror('mpath: Too many attachments attempted");
ex it( I1 )

1" create the shared segment */
instructure->segment = dynamicsharedsegment(nurimachinessegmentnum,

MA, XSHAREDS I ZE.
&instructure->shmid, freespace);

/* create the send semaphore. (unused if receiving broadcast messages) L
inustructure->sendsem = semtran(sendportnum);

/* create the receive semaphore (unused if broadcasting messages) *
instructure->teceivesem = semtran(receiveportnum);

/0 free the sender and receiver parts of the shared segment */
i nt _ shar ed _buffer( inst ruc ture->segment );

/* spawn off the sender process */

if( strcmp( server, "receive" ) 0 )

/* add the start of the line, i.e. the program to run ,
st rcpy( temp,SENDLOCATION);
St rcat( temp," "):

/* add the number of the sharedsegment in text */ S
sprintf(temp2,"%d",instructure->shmid):
st rcat( temp. temp2);
strcat(temp." ):

/* add on the machine name
s t rca t ( I empznname) ;
st rcat(temp." ");

/ add the port number ./
spr int f( temp2, "%d" . sendportnum);
st rca t (temptemp2);s tr ca t (temp. " ) : ,,

/* indicate whether a server, a client, or a broadcaster */
st rcat ( t emp server ) ;
st rcat (temp." "):

/* add the machine sequence number *
spi n I f ( t enip2 "%d " s qequecceni) -
s t rcat( (temp, Ietp2)

/* spawn off into the background */
q t rcat (temp,&")

/* spawn off the sender *
i (( qystem(tenpI == - I

per ror( "SEP' sy t ei ca I I y ea i I ed")

C me ,'

/I kill sender (which reallv doesn t exst anyway) so that te

92%
oe

.. R

% %



mpath.c

sender isjfree() call will always ieturn FALSE.
A similar thing does not have to be done for receiver has _data(
in a broadcasting path since it will always return FALSE anyway */

kill-sender( instructure->segment, instructure->sendsei ):

/* spawn off the receiver process */

if( strcmp( server, "broadcast" ) 1= 0

/* add the start of the line, i.e. the program to run */
st rcpy( tenp.RECEIVELOCATION);
strcat(temp," ");

/* add the number of the sharedsegment in text */
sprintf( temp2,"%d",instructure->shmid);
strcat(temp.temp2) : '

strcat(temp," ")I

/* add on the machine name */
s t rca t (temp .mname);
s t rca t ( t emp. )

/* add the port number */
sprintf(temp2."%d",receiveportnum);
st rcat(temptemp2):
st rcat ( temp, "

/* indicate whether a server, a client, or a broadcast receiver */
strcat(tempserver);
strcat(temp," ");

/* add the machine sequence number */
sprintf(temp2."%d".sequencenum);
st rcat (temp. t emp2);

/* spawn off into the background */
st rcal( temp, "&");

/* spawn off the receiver */
if( system(temo) == -1 )

perror("RECtIVE system call failed"):

93

-p

-p



3. netV.c

a. Calling Protocols

This module contains the low-level socket-managing calls. No functions m

this module are intended for application programs. This module is only linked into the

send and receive processes.

b. Code and Description

* TITLE Inter-Computer Conmunicat ion Package *

* NUIXJLE netV.c *

* VERSION'l: 5.0 *

* DATE 31 May 1988 *

* AUTIOR Theodore H. Barrow *

*HI STORY: *"
**

* VERSION: 1 0

* DATE 19 November 1986 *

* ALUHKDR Michael J. Zyda *

* DESC. Contains routines connect server and connect _client to allow *% two machines with Unix System V to communicate via sockets.

S VERSION: 2.0

DATE 29 April 1987 *
* *

* AUTHOR Michael J. Zyda *

* DESC. Converted to work with 4.2BSD sockets. *

. ,** VE RSION: 3.0 *

* DATE 27 May 1987

* AUTIOR Theodore H. Barrow *

* DESC. Eliminated excess variables, some unused and some unnecessary.*

VERSION: 4.0 *.

DATE 21 August 1987

* A1I4OR Theodore H. Barrow

* DESC. Improved reliability of socket connection and disconnection.

VERSION: 5.o 1

DATE 31 May 1988

94 %¢



netV.c

* AU1 :R Theodore H. Barrow *

* DESC. Added start broadcast) and broadcastreceivefl to provide *
* datagram sockets for broadcast use. These sockets use the *
* default Internet broadcast addressing. *
*****4**4*4******4**44*4****4************* 4*****4* *** 4

* RECORD OF C-IAICES *

*Version* Date * Author * * Affected *Reqd*
* * Change Description * Modules *Vers*
*4*********4************444*****4******************44******** 444

* 4.1 * 4Jan88 * T. H. Barrow * ' send.c *4.0 *
* * Changed include library pathnames for IRIS 4D.* receive.c *4.0 *
******4************44*******4************************************** **4***

4 * * * 4 4 *

4 4 * 4 4

******4********************** 4****4444***4********* 4***4***44****4** /

r

95.

N.O

IN

,-,

99

* 95

|'
t.i.'> k V .'\K..,



netV.c

/*
This segment, when linked into a program on a computer with a UNIX 4.2 BSD
operating system, will allow the program to conmunicate with programs
executing on other computer systems over an Inteinet network.

#define TRUE 1

/* include files for UNIX 4.2 BSD. These are all called from the bsd
subdirectory in /usr/include. The file sys/types.h also exists and is
included when bsd/sys/types.h is used. This was done for ease of change -

if and when Silicon Graphics changes the include library structure. */
#include <sys/types.h>
#include <sys/socket.h>
#include <bsd/netinet/in.h>
#include <bsd/netdb.h>

The connectserver(remoteclient_name, port-number) function performs
the actions required to connect a server system to a remote client system

tnt connectserver(remoteclient_name, port_number)

char remote _clientname[l: /* name of the remote client system */ ''

int port.tnumber: /* port number to the remote client system */

char *ptr-client-name; /* pointer to the remote client system's name */

int localserversocket; /* local socket number */

int socket(o; /* function that opens a socket */ p
int accepto: /* function that accepts a connection from

a remote client socket */

int remote _client _socket -1; /* socket number of remote client system */ , U

/* protocol and address data structure for socket */
static. struct sockaddrin address = AFINET };

long remoteclientaddress: /* address of the remote client system */

short remote clientport: /* port number of the remote client system */

int addresssize: /* size of address of remote client system */

/* create socket structure from input parameters */

/* get a pointer to the remote client system's name */
pt r-cI ient _iname = remote cl ient -iname:

/* convert the remote client system name to its address.
Note that gethostbynaneu) requires a pointer to a pointet */

remote _ client _address = (long)gethostbyname(&pt r client _name):

/* set the remote client port number above the system reserved ports
by adding the remote client port number to the number of reserved ports */

remote _ clientport = IPPORTRESERVED + port _number:

/* remote client system address family (lnternet in this case) */
address.sin fm ily =AFINET

96 j

",m''a '-= " .rd . , , . • - .- .- .€ - - ,r , , , ,, . - ,. •,%.% -. -% - ,- . .,,- . -. - "' ' "- '% ."' ,"L" 3 " " %<,,9 ,



netV.c

/* place the remote client port number into the address data structure
in network byte order */

address.sinport = htons(remoteclientport):

/* place the remote client system's address in the address data structure *I
address.sin _addr.s _addr = remote _client _address;

/* find number of bytes in the remote client address */
addresssize = sizeof(remoteclient address);

/* attempt to open a local socket */
localserver socket = socket(AFINET.SOCKSTREAM.0);

if(local _server _socket < 0)
perror("Server couldn't open a local socket:"):

else

if(bind(local server socket, (caddr t)&address, sizeof(address)) < 0)
perror("Server couldn't bind address to local socket:");

/* set the maximum number of remote client systems to be connected to */
listen(local serversocket,S(2vtXCONM);

printf("Server waiting to connect to %s\n",remoteclientname); .

/* attempt to accept a connection */
remoteclientsocket = accept(localserver.socket, &address,

&address_ size);

if(remote_client socket < 0)

/* an error occurred in the server attempting to
accept a connection from remote client system */

perror("Server couldn't accept connection from remote client system:");

shutdown(local_server_socket, 2);
close(local server socket);

/* else the server accepted a connection from the remote client system */

/* return the socket number of the remote client system */
return(remote client socket);

/* connect-server

97

%N



netV.c

The connectclient(remote_servername, port-number) function performs
all the actions required to connect a client system to a remote server
system

int connectclient(remoteserver_name, port-number)

char remoteservername[]; /* name of the remote server system */

int portnumber; /* port number to the remote server system */

int local-client-socket; /* local socket number */ P

int socket); /* function that opens a socket */

/* function that connects local socket to remote server socket */
int connect();

int remoteserver_socket; /* socket number on remote server system */

/* the protocol and address data structure specified for the socket */
static struct sockaddrin address = AFINET };

struct hostent *remote server address; /* address of remote server system */

short remoteserverport; /* port number of remote system */

/* create socket structure from input parameters *

/* convert the remote server system name to its address.
Note that gethostbyname() requires a pointer only in this case

remote-server address = gethostbyname(rernote_server name);

/* clear out the address structure */
bzero((char *)&address, sizeof(address)):

/* copy the remote server address structure into the address structure *

bcopytremoteserveraddress->h_addr.
(char *)&address.sinaddr,
remote server address->h-length);

/* set remote server port number above the system reserved ports by adding
the user's remote server port number to the number of reserved ports */

remote-server-port = IPPORT-RESERVED + port-number;

/* remote server system address family(Internet in this case) */
address.sin _ family = AFNET:

/* place the remote server port number into the address structure

in network byte order */
address.sin_ port = htons(re ote-server-port);

/* attempt to obtain a local socket *

local _client _socket = socket(AFINET, SOCKSTREAM, 0):

if(local _client _socket < 0)
perror("Client couldn't open a local socket:"):

elseH

/* place Internet address family type in address structure */
address.gin family =AF_ INET:

98

1%



netV.c

/* attempt to connect local client socket to remote server socket */
remoteserver socket connect(local client socket, (caddr_t)&address.

sizeof(address) )

if(remoteserversocket < 0)

/* error occurred in attempting to connect to remote server socket */
perror("Client couldn't connect to the remote server socket:"):

shutdown(localclient_socket, 2);
close(local-client socket);

/* set local client socket so that negative value is
always returned when an error occurs

local client socket = remoteserver socket:

e lse
/* successfully connected to the remote server system */
printf("Connection established with %s.\n",remote_servername),

/* return the socket number of the local client system */
return(localclientsocket);

/* connectclient 5/

k.6

99-

..

.,

99,i

P"4 ~ --



netV.c

The start _broadcast(portnumber) function performs
the actions required to initiate a datagram broadcast socket.
*********** ******* ******************************************* I _

int startbroadcast(portnumber)

int portnumber: /* port number for the remote receiver system */

int broadcast-socket; /* local socket number */

int socket(): /* function that opens a socket 6

int setsockopt): /* function that sets a socket to allow broadcast */

int on = TRUE: /* to set broadcast toggle on for socket */

/* protocol and address data structure for socket */
static struct sockaddr-in address AFINET }.

short broadcastport: /* port number broadcast heard from */

/* create local socket structure from input parameters */ A

/* set the broadcast port number above the system reserved ports
by adding the broadcast port number to the number of reserved ports */

broaucast-port = IPPORTRESERVED + port-number;

/* system address family (Internet in this case) */
address.sinfami ly = AFINET :

/* place the port number into the address data structure
in network byte order */

address.sin.port = htons(broadcast-port);

/* place the local address in the address data structure
in network byte order */

address.sin addr.s addr = htonl(INADCRANY);

/* attempt to open a local socket */
broadcast socket = socket(AFINET,SOCXDGRA1,0);

if(broadcastsocket < 0)
perror("Broadcaster couldn't open a local socket:");

else

/* set the broadcast socket for broadcasting */
if(setsockopt( broadcast_socket, SOL -SOCKET', SO_BROADCAST,

&on. sizeof(on) ) < 0)
perror("Broadcaster couldn't set socket to broadcast:");

else if(bind( broadcast _socket, (struct sockaddr *)&address,
sizeof(address) ) < 0)

perror("Broadcaster couldn't bind to local socket:").
else

printf("Waiting to broadcast\n");

/* return the socket number */
returntbroadcast_socket);

/* startbroadcast */

100

% or



netV.c

The broadcast _receive(broadcaster-name.portnumber) function performs
all the actions required to set up a broadcast receiving socket

*************000000*************************************** 'p

int broadcast receive(broadcaster-name.port-number)

char broadcaster-name[]; /* name of the broadcaster system /

int portnumber; /* port number for the broadcaster */

mt local-socket; /* local socket number */

int socketo; /* function that opens a socket */

int broadcaster_socket; /* socket number on broadcaster system */

/* the protocol and address data structure specified for the socket */
static struct sockaddr-in address = AFINET;

struct hostent *broadcaster address; /* address of broadcaster system */

short broadcasterport; /* port number of remote system */

/* create socket structure from input parameters / *

/* convert the broadcaster system name to its address.
Note that gethostbyname() requires a pointer only in this case

L'oadcaster _ address = gethostbyname(broadcastername);

/* clear out the address structure */

bzero((char *)&address, sizeof(address));

/* copy the broadcaster address structure into the address structure */
bcopy(broadcaster address->h-addr,

(char *)&address.sinaddr,
broadcaster address->hlength);

/* set broadcaster port number above the system reserved ports by adding
the user's broadcaster port number to the number of reserved ports */

broadcaster-port = IPPORTRESERVED + port-number;

/* broadcaster system address family(Internet in this case) */

address.sin_ family =AFINET:

/* place the broadcaster port number into the address structure
in network byte order */

address.sinport = htons(broadcaster port):

/* attempt to obtain a local socket */ 0

localsocket = socket(AP_INET, SOCK -DRAM. 0):

if(local_socket < 0)

perror("Receiver couldn't open a local socket:"):

else

/* attempt to connect local socket to broadcaster socket */

broadcastersocket = connect(local_socket, (struct sockaddr *)&address,
sizeof(address)):

101

%"
J.- Ou



netV.c

if(broadcastersocket < 0)

/* error occurred in attempting to insert broadcaster information */
perror("Receiver couldn't find broadcaster:"):

shutdown(localsocket, 2);
close(local _socket):

/* set local-socket so that negative value is
always returned when an error occurs

*/
local-socket = broadcaster-socket;

else
/* successfully listening to the broadcaster system */
printf("ready to receive from %s.\n",broadcastername):

/* return the socket number of the local system */
return(local socket);

/* broadcastreceive */

102

%

N Lis .



4. receive.c

a. Calling Protocols b

This program monitors a socket, like a daemon. It is spawned transparently to

the user and receives its initialization data through the command line.

b. Code and Description
/ *****t*********************************************************************** V."

* TITLE Inter-Computer Cosmiunication Package *

* NUEXJLE receive.c *

* VERSION: 3.0 *

* DATE 31 May 1988 *i

* AUTHOR Theodore H. Barrow *

* HISTORY:

* VERSION: 1.0 *

* DATE 6 February 1987

* AIf'JR: Michael I. Zyda *

* DESC. Background process to receive messages over link. *

* VERSION: 2.0* .. ,

* DATE 15 December 1987 *

* AUIU:R Theodore H. Barrow *

* DESC. Added capability to get sequence number from conniand line *
* and use it to get offset into shared memory segment. *

* VERSIcN4: 3.0 *

* DATE 31 May 1988 * .5

* AUITI-OR Theodore H. Barrow. *
* DESC. Added broadcast receive capability *

* RECORD OF CHANGES *

*Version* Date * Author * * Affected *ReqtI*
* * Change Description * Modules *Verq*
********* ******** *.** ************** ****t********** **************** ata1

* * * * *

**** **at**aa*** a~aaa** **** a~a *a~a *a* *a~aa~a*t** a**a a~",aa,***



receive.c

#include "shared.h" -.

#include "gl.h"

ma in( argc ,argv)

int argc: /* argument count */

char *argv[]: /* pointers to the passed in arguments */

/* we need to declare character variables for everything passed in */

char shmidstr[lO]: /* shared segment string holding the integer key*/

int shmid: /* integer pulled out of the string */

char *segment; /* character pointer to the shared segment */

int receivesem; /* receive semaphore */

char *sharedsegment()./* create shared segment function */

char nname[100]; /* machine name */

char portstr[lO]: /* port number string */

long portnum: /* port number pulled from the string */

char server(O]; /* server string */ -

char seqnostr[10]: /* sequence # string holding integer sequence # */

long sequencenum = 0; /* integer pulled out of the string (default 0) */

int socket; /* the opened socket descriptor */

tnt connect server()-

tnt connectclient( :

int broadcastreceive();

int receiver is-free( ;

nt receivershould die();

nt se. an(): /* semaphore creation routine. */ I

/* pull out the strings from the argument list */
if(argc < 5)

printf("RECEIVE: incorrect argument count!\n"):exit 11);

/* pull out the shared memory string */
s t rcpy( shmi ds t r * a rgv [ 11 ) :
s scan f( shmids t r. "%d" &shmid);

/* pull out the machinename string */
s t rcpy(mname, a rgv 12 ):

/* pull out the port number string *,
strcpy(portstr argv[31);-
s scanf(portstr."%d".&portnum);

104 1

MM.N



receive.c

/* create the receive semaphore */
receivesem = semtran(portnum):

/* pull out the client/server string */
strcpylserverargv[4]):

/* pull out the sequence number string */
if( argc > 4

strcpy(seqnostr,argv[5]);
sscanf(seqnostr,"%d",&sequencenum);

/* attach to the shared memory segment */
if((int)(segment = (char *)shmat(shmid, 0, 0666)) < 0)

perror("RECEIVE:shmat");
exi t(0)

/* create the shared segment address to use */
segment +ff= sequencenum * MAXSHAREDSIZE;

/* open the socket connection to the named machine */
if(strcmp(server,"server") == 0)

/* we should open as the server */
socket = connectserver(mname.portnum);

else if(strcmp(server,"receive") == 0)

/* we should open as the broadcast receiver*/
socket = broadcast receive(nmame,portnum);

else

/* we should open as a client */

socket = connectclient(nmame,portnum);

/* check to make sure socket was opened, exit if not *j
if(socket < 0)

printf("RECEIVE: socket connection NOT madel\n");
exit(I);

/* the infinite loop...*

if(strcmp(server,"receive") == 0)
while(TRUE)

/* should the receiver die?? */?
if(receiver shoulddie(segmentreceivesem))

/* exit after detaching shared segment and cleaning up socket *1
detachsharedsegment(segment):
shutdown(socket, 0):
close(socket);
exit(O);

/* if the receiver part of the segment is free, read onto it */
if(receiver is-free(scgment))

/* check socket and read into segment if proper message */ U

if(broadcastintosegment(socket,segment,mname,portnum) > 0)

105

," W'?, .' '\%' L'.'. L' .'.-','.-'.; ''.'. ','.""..','. ". " " ...... " "• . .. "



receivexc

/* at this point, sleep unt~l we receive a signal from the
graphics program that the receiver segment is free, i.e.
the data has been read out *

P( receivesem) ;

/* end while true for broadcasting*/
else

whi le(TRUE)

/* should the receiver die??? *
if(receiver should die(segmnent,receivesem))

1* exit after detaching shared segment and cleaning up socket *
detachsharedsegent(segment);
shutdown(socket, 0); %
close( socket);
exi t (UJ)

/* if the receiver part of the segment is free, read onto it /5
if(receiveri free(segment))

/* read socket into segment ~
read_ socket _into..segent~socket~segment);

1* at this point, sleep until we receive a signal from the
graphics program that the receiver segment is free, i.e.
the data has been read out ~

P( receivesem) ;

/* end while true for direct connect ions*/

1061

VAX IM k ,



5. semaphore.c

a. Calling Protocols

This module repackages the low-level semaphore calls into a P and a V

semaphore operation. No functions in this module are intended for application programs.

b. Code and Description

* TITLE Inter-Computer Communication Package *

* NUULE send.c *

* VERSION: 1.0 *

* DATE 11 February 1987 *

* AUIIOR :Michael J. Zyda *

* HI STORY: *

* VERSION: 1.0 *

* DATE 11 February 1987 *

* AUHOJR Michael J. Zyda *

* DESC. Implements P and V semaphore operations for Unix system V.
Based on an ex le fronm Advanced Unix Progranming. *.

* RECORD OF Q-iAlES *

*Version* Date * Author * * Affected *Reqd*
* * Change Description * Modules *Vers*

*** * * * *

107 JWS



semaphorexc

#include <sysltypes.h>
#include <sys/ipc.h>
#include <sys/sem. h>

int senitran(key) 1* translate semaphore key to ID ~
jut key:

int sid:

if ((sid =semget((keyt)key.I,06661 IPC-CRE-AT)) = 1

perror( semget );

return( sid);

static void semcail(sid,op) /* call semop ~
i nt sid:
i i op:

struct sembuf sb:

sb-sem-num = 0:
ib. sen.op = op;
9b.sem fig = 0i:

if(semnop(sid,&sb,l) == -1)

per ror("semop");

void P(sid) /* acquire semaphore *
int sid;

semcall(sid, -1);

void V(nid) f* release semaphore *
i %id:

semcal I( sid, 1):

108

-kl Nceo'. P %



6. send.c

a. Calling Protocols
,A..

This program monitors a socket, like a daemon. It is spawned transparently to

the user and receives its initialization data through the command line.

b. Code and Description

* TITLE Inter-Computer Communication Package /-

* ?vflJE send.c C4

* VERSION: 3.0 *
* * S.

* DATE 31 May 1988 *

-ALI-OR Theodore H. Barrow * Us

* HISTORY: * ]
* , *

* VERSION: 1.0 *

* DATE 6 February 1987 *

* AUriCR Michael J. Zyda •

* DESC. Background process to send messages over link. * ]

* VERSION: 2.0 *

* DATE 15 December 1987 *
* Atn1IR Theodore H. Barrow

* DESC. Added capability to get sequence number from comnand line * •
* and use it to get offset into shared memory segment. * -

.* VERSION: 3.0 *

* DATE 31 May 1988 *
* *, ,

* ALrfR Theodore H. Barrow *

* DESC. Added broadcast capability *

* RECORD OF C14ANGES *

*Version* Date * Author * * Affected *Reqd*
* * Change Description Modules *Vers*-,

.i

109 1
, ""% *"" " - ,, . ,", . ,%

a, *~ 44i



send.c

#include "shared.h"
#include "gl.i'"

main(argc.argv)

int argc: /* argument count */

char *argv[]: /* pointers to the passed in arguments */

/* we need to declare character variables for everything passed in */

char shmidstr[lO]; /* shared segment string holding the integer shmid */

int shmid: /* integer pulled out of the string */
chr*sglet /* character pointer to the shared segment *

int sendsem: /* send semaphore */

char *sharedsegment():/* create shared segment function */

char mname[l001] /* machine name */

char portstr[1O]: /* port number string */

long portnum: /* port number pulled from the string */

char server[lO]: /* server string */

char seqnostr[10], /* sequence # string holding integer sequence # */

long sequencenum = 0: /* integer pulled out of the string (default 0) */

int socket; /* the opened socket descriptor */

int connect_server();

nt connect client):

int start broadcast( :

nt senderhas data();

nt sendershould-die():

nt semtran(): /* semaphore creation routine. */

/* pull out the strings from the argument list /

if(a rgc < 5)

printf("SEND: incorrect argument count!\n");
exit( )

1* pull out the shared memory string */

strcpy(shmidstr,argvtl]):
sscanf( shmidst r. "%d" &shmid):

/* pull out the machinename string */
strcp3'mname,argv[2J):

/* pull out the port number string */
sticpy~port tr,argv[31):
sscanf(portstr,"'%d".&portnum):

/* create the send semaphore *

110

r.r



send.c

sendsem = semtran(portnum);

/* pull out the client/server string */
strcpy(serverargv[4]);

/* pull out the sequence number string *I
if( argc > 4 )

strcpy(seqnostr argv[5]);
sscanf(seqnostr,"%d",&sequencenum);

/* attach to the shared memory segment */
if(int)(segment = (char A)shmat(shmid, 0, 0666)) < 0)

perror("SE":shmat");
exit (0):

/* create the shared segment */
segment += sequencenum * MAXSHAREDSIZE;

/* open the socket connection to the named machine */
if(strcmp(server,"server") == 0)

/* we should open as the server */
socket = connectserver(mnameportnum);

else if( strcmp( server, "broadcast" ) == 0

/* we should open as a broadcaster */
socket = startbroadcast( portnum );

elsee I
/* we should open as a client */
socket = connectclient(mnamneportnum);

/* check to make sure socket was opened, exit if not */
if(socket < 0)

printf("SED: socket connection NOTmade!\n"):
exi t (1)

/* the infinite loop.. */

if( sircmp( server, "broadcast" ) == 0
while{TRU2)

/* should the sender die'??? *
if(sendershoulddie(segmentsendsem))

/* exit after detaching segment and cleaning up socket */
detachsharedsegment(segment):
shutdown(soc>.;t, 1):
close(socket);
exit (0)

/* if there is data in the shared memory segment . */
if(senderhasdata(segment))

/* write the data in the shared segment onto the socket */
sendsocket from_segmentt(socketportnumsegment):

111



send.c

/* at this point, sleep until we receive a signal from the graphics
program. The signal will indicate that the graphics program
has put more data into the shared segment.

P(sendsem);

/* end while true for broadcasting*/ 4

else
while (TRUE)

/* should the sender die??? *f
if(sender should die(segmentsendsem)) A-N

/* exit after detaching segment and cleaning up socket */
detachsharedsegment(segment);
shutdown(socket. 1); e,,
close(socket );
exit (0);

/* if there is data in the shared memory segment, ...
if ( sender_hasdat a( segnient))

/* write the data in the shared segment onto the socket */
writesocket from.segment(socket,segment);

/* at this point, sleep until we receive a signal from the graphics
program. The signal will indicate that the graphics program
has put more data into the shared segment.

P(serdsem) ;

/* end while true for direct connection*/

112

%'0'g

, : *5: - ., . .:':.',',''.- ",. ':-'v - '. ;-, 3" ." ="-.."* -"*'A " .-" . ' -', ' . r '. . ",d - : 'p*':, 9***- ; % -



.%

7. shared.h

a. Calling Protocols

This module has all the predefined constants and type definitions. It must be

included in the application.

r

113



shared.h

b. Code and Description
* *

* TITLE Inter-Computer Connmunication Package
* V.

* MDULE shared.h * ",

* VERSI(ON: 4.0 *

* DATE 15 December 1987 *

* AUT-JR: Theodore H. Barrow *

************* *****4..4444********************** ****44**4.*$ 4..*4.****$**** 4*$* 4.4..4.4

* HISTORY: *

* VERSION: 1.0

* DATE :6 February 1987 ** *
* ALTrHJR : Michael J. Zyda *

* DESC. : Contains all defines and special constants for shared

memory socket system.

* VERSION: 2.0 *

* DATE :27 May 1987 *

* AUTIHR : Theodore H. Barrow * CM* 4. M,.

DESC. : Added a typedef of structure for use by various routines.
* Added message types for high level read/write protocol.

* VERSIN: 3.0 *

DATE : 21 October 1987

AUTIIR : Theodore H. Barrow *.

DESC. : Changed dependencies of buffer calculation constants so that .J

* only one need change. Added additional message types.

* VERSION: 4.0

*. DATE : 15 December 1987

AUTIMR : Theodore H. Barrow

* DESC. : Added field to buffer set so that each [ink would have its *

own area to handle partial receipt of messages. *

RECORD OF CHANGES

4. *U
*Version* Date * Author * Affected *Reqd*

Change Description Modules *Verz*

* 4.1 * 4Jan88 * T. H. Barrow * * 4

*C * Changed pathname to include /usr for TRISI *

114

S --

114 ~imI

S



shared.h
/*

the following 3 defines are the changeable parameters

LARGESTREAD MUST be divisible by 4

#define SENDLOCATION "/usr/work/barrow/share3/send" /* the name of the program
to run for the sender */

#define RECEIVELOCATION "/usr/work/barrow/share3/receive" /* the name of program
to run for the receiver */

#define LARGESTREAD 252 /* the largest read (i.e. buffer size) */

/* The following defines are constants or are derived from LARGESTREAD */

#define SEMDEROFFSET (LARGESTREAD + 4) /* the sender data starts here /

#define VMENDEROFFSET (SEYMDEROFFSET / 4) /* long word offset for sender data /

#define RECEIVEROFFSET 0 /* the receiver data starts at byte 0 */

#define ),RECEIVEROFFSET 0 /* the receiver data starts at long word 0 */

#define PROTOI-HJOLDOFFSET (SEDEROFFSET * 2) /* holding area starts after
sender area 5/

#define MAXSHAREDSIZE (PROTOCXJ LDOFFSET + 12) /* the number of bytes in the
shared segment */

#define CHARACTER TYPE 'B' /* code for characters */
#define INTEGERJ'YPE 'I' /* code for integers */
#define FLOATTYPE 'R' /* code for floats */
#define CARAC'TER.ARRAYTYPE 'C' /* code for character arrays */
#define INTEGERARRAYTYPE 'J' /* code for integer arrays 5/

#define FLOATARRAYTYPE 'S' /* code for float arrays */

#define CHARACTER SIZE 1 /* character size in bytes /f
#define INTEGER.SIZE sizeof(l) /* integer size in bytes */
#define FLOAT-SIZE sizeof(l.0) /* float size in bytes /

/* the following is the structure type definition needed for each machine
you want to conmunicate to...5/

typedef struct
char *segment; /* ptr to shared memory segment 5/

int shmid; /* system generated shared mem. id 5/

int sendsem; /* semaphore used to wakeup the sender
process.

int receivesem: /* semaphore used to wakeup the
receiver process...

5/

Machine

115



.'

0

8. shareseg.c

a. Calling Protocols '

This module contains the low-level shared-memory calls. No functions in this

module are intended for application programs.

b. Code and Description

* TITLE : Inter-Computer Cormunication Package *

* ULE : shareseg.c *

* VERSION: 3.1 *

* DATE : 24 F-bruary 1988 *

AUIH R Theodore H. Barrow *

* HISTORY: ** , S
* VERSION: 1.0 *

* DATE :6 February 1987 *

* AIT : Michael J. Zyda *

* DESC. : Contains routines to manage shared memory segment. Creation *
* attachment, detachment and deletion are all covered. *

* VERSION: 2.0 *

* DATE 21 October 1987 *

* AUTHOR: Theodore H. Barrow

DESC. : Added function dynamicsharedsegment to allow dynamic memory *
* allocation after conmunications link established. *

* VERSION: 3.0 *
* *

* DATE 15 December 1987 *

AUTIOR : Theodore H. Barrow *

* DESC. Modified function dynamicsharedsegment for use with multiple *
* links. First call does shared segment creation. Subsequent
* calls return address for the next buffer set. *

* RECORD OF CHANGES*
*Version* Date * Author * * Affected *Reqd*

Change Description * Modules *Vers*
*************** **.*******..******* ****** ***** **** * *4****4****

3.1 * 24Feb88* T. H. Barrow * * none * *
* Added compatibility for IRIS 4D. * * 4

116

W.

... . .'

,.~ ')& Z A~PZ AN'A"'M 24 * 4 4 j,% .



shareseg.c

#include <sys/sysnacros.h> .
#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shim. h>
#include <gl.h>

/* The following defines will have to be modified for different machines
but one of the underlying shared memory attachment mechanisms should
work for any system V implementation. */

#define IRIS4D I
#define IRIS3000 2
#ifdef FLAT
#define MACHINE IRIS4D
#eIse
#define MACHINE IRIS3000
#endi f

char *sharedsegment(keynbytes.shmid)

long key: /* the key to use for the segment */

long nbytes: /* the number of bytes in the segment

int *shmid: /* returned shared memory id name

char *buf: /* temp char pointer */

struct shmidds junkbuf; /* I don't care what's in this buffer */

/* allocate a shared memory segment */
if( (*shmid = shnmget( key, nbytes, 0666 1 IPCCREAT )) < 0

perror("shmget"):
exit(0);

/* attach to the shared memory segment /1

if((int)(buf = (char *)shmat(*shmid, 0, 0666)) < 0)

perror ( " shmat" );

/* Since there was an attachment error, delete the segment */
if( shmctl( shmid, IPC_INID, &junkbuf ) ==-1 )

perror( "shmctl" )%
exit (0): %

/* return the pointer to the shared segment S/

return(buf);

117

le -e o .r4 % % %,%



shareseg.c

char *attach withindatasegment( key, size, shmid, freespace

long key: /* the key to use for the segment */

long size; /* the number of bytes in the segment */

int *shitid: /* returned shared memory id name */

int freespace: /* amount freespace desired for dynamic allocation */

char *enddata, *buf; /* temporary address pointers */

struct shmid-ds junkbuf; /* I don't care what's in this buffer */

char *sbrk(). *malloc();

/* allocate a shared memory segment */
if( (*shmid = shmget(key, size, 0666 I IPCCREAT)) < 0

perror( "shmget");
exi t(0)

/* Ensure at least as much unallocated space as freespace indicates.
Nomally the top of the data region is incremented more than the
minimum required to meet the malloc() request. Using malloc)
and free() ensures that this mechanism is available for subsequent
dynamic memory allocations. Direct use of sbrk() system call
causes the malloc() mechanism to fail on subsequent allocation
requests. freespace is cast to unsigned to meet malloc() spec. */

free( malloc( (unsigned)freespace ));

/* find the top of data region */
enddata = sbrk(0);

/* round up to the next page boundary for attachment of shared
memory segment */

buf = (char *)((int)enddata - ((int)enddata % S1-hLBA) + SI-LBA):

/* reset top of data region to be above shared segment */
if( brk( buf + size ) < 0

perror("brk"):

/* Since there was an error, delete the segment */
if( shmctl( shmid, IPC-RI1D, &junkbuf ) == -1 )

perror( "shmctl" );

exit(-1);

/* attach to the shared memory segment at the calculated address */
if( (int)shmat(*shmid. buf, 0666) < 0

perror("shmat"):

/* Since there was an attachment error, delete the segment */
if( shmctl( shmid, IPCRMID, &junkbuf == -1

perror( "shmctl" ):
exit(0);

ret,,rn( buf );

S/* attach _withindatasegment( */

118

4Y



shareseg.c

char *dynamicsharedsegment(numnachines, key, nbytes, shmid. freespace)

int nunmachines: /* maximum number of machines to be initiated */

long key: /* the key to use for the segment */

long nbytes: /* the number of bytes in the segment */

int *shmid; /* returned shared memory id name */

int freespace: /* amount freespace desired for dynamic allocation */

static Boolean firsttime = TRUE: /* allows for multiple calls */

static char *startshared: /* start of shared memory space */

static int *holdshmid; /* holds shmid for subsequent calls */

if( firsttime ) IS
switch( M ikINE )

case IRIS4D:
startshared = sharedsegment( key, nurnmachines*nbytes. shmid ):
break:

case IRIS3000:
startshared = (char *)attach_withindatasegment( key.

nunmachines*nbytes, shmid, freespace ):
break;

default:
perror( "shareseg: Unknown machine" );

/* switch( MACHINE ) */

holdshmid = shmid:
firsttime = FALSE;

else

/* start next buffer imnediately above last. Return the same shmid
for al! buffers. Assumes all buffers are same size (true if all
from same shared.h definition. */

startshared += nbytes;

*shmid = *holdshmid;

/* return pointer to the proper buffer in the shared segment */
return( startshared );

.R

119 ]

Si

'( . % . .. C -. . . .* . 'C . . . . . . .



shareseg.c

detachsharedsegment(segment)

char *segment-. 1* segment to detach from *

int returnvalue;

if( (int)segment % ST-fvBA != 0
return( I

else

if( returnvalue = shmdt(segment) < 0)
per ror("shfud t ") ;

return( returnvalue )

de let e sha r ds egment ( segment shmid)

char *segment; /* character pointer to the shared segment *

int ghmid: f* shared memory id ..

int returnvalue:

struct shmid-ds junkbuf:, 1* I don't care what's in this buffer *

1* detach from the shared segment and set returnvalue ~
if( returnvalue = detachsharedsegment(segment) == 0

/* remove the shared segment from the system and reset returnvalue ~
if( returnvalue =shmctl(shmid, IPC7_Rh4ID, &junkbuf) < 0)

perror( "shmnct i");

return(returnvalue);

120



9. support.c

a. Calling Protocols

This module contains functions that are intended for the application's use and

functions that are used exclusively by other routines. The parameters for externally

accessible functions are described below.

i. receiver has data

int receiverhas-data( instructure)

Machine *instructure; /* includes
char *instructure.segment a pointer to the shared segment */

ii. sender is-free

int sender is free(instructure)

Machine *instructure; /* includes
char *instructure.segment a pointer to the shared segment *0

.

121

-2.

".,#

lt~iut ll !l~r- r= X. ,e . €,,, ''l" lr__€ v¢',i" ,,€,,," "% t' "€ =" " r"_,"% t"__€" '%. .*t " . ,.%,t' = __. 2, ' t, , " .# .# ,,/ ' t
"=

' -V.w



support.c

b. Code and Description

************************************* *

* TITLE Inter-Computer Conmunication Package * *

* N DUIJLE support.c * 4.,.

* VERSION: 4.0 *
*i *

* DATE :31 May 1988

* ALUTlR : Theodore H. Barrow *

* HISTORY: *

* VERSION: 1.0 *

*DATE 6 February 1987*

* AL'K)R : Michael J. Zyda

DESC. : Contains support routines for shared memory conmunications *
system. *

* VERSION: 2.0

* DATE :27 May 1987

AUI-R : Theodore H. Barrow

DESC. : Converted functions called by the application program to use *
a structure for ease of use. *-

* VERSION: 3.0 *

DATE : 21 October 1987

AUTHR : Theodore H. Barrow

DESC. : Removed functions for reading from and writing to the shared *
memory segment by the application program.

*. VERSION: 4.0

DATE :31 May 1988

AUTlIOR : Theodore H. Barrow

DESC. : Added functions broadcastinto-segment and

send_ socketfrontsegment for broadcasting over datagram socket*

RE ORD OF CHANGES

*Version* Date Author * * Affected *Reqd*
Change Description Modules *Vers*

4. * 4.4.4 4. *

122A

% S



support.c

#irclude "shared.h"
#include <gl.h>
#include <bsd/sys/types.h>
#include <sys/socket.h>
#include <bsd/netinet/in.h> S
#include <bsd/netdb.h>

/* the following routine sets up buffer area */

init_sharedbuffer(segment)

char *segment; /* pointer to the shared segment */

{ .
freesender( segment );
free_receiver( segment ),
'(segment + PROTOCOJIOFFSET + 9) \';

/* the following routine writes zeroes at the top of the
shared segment indicating that the segment data is no longer
valid. 

freesender(segment) e

char *segment, /* pointer to the shared segment /1

/* the following line zeroes the first four bytes of the sender part

of the shared memory segment. 'segment' is a character pointer.
I coerce it into a long integer pointer and then write a zero.

*/
*((long *)segment + NSENDEROFFSET) = 0;

/* this following routine writes zeroes at the top of the
shared segment indicating that the segment data is no longer
v a I i d. :%

*I 1.

freerece iver( segment) -r

char *segment: /* pointer to the shared segment */

/* the following line zero--s the first four bytes of the receiver part

of the shared memory segn-evt. 'segment' is a character pointer.
I coerce it into a long intcger pointer and then write a zero.

'((long *)segment + VMRECEIV. OFFSET) = 0:

1231

%I



support.c

/* the following routine tests the first 4 bytes of the receiver
segment to see if they are non-zero.
it uses an input structure since called by main program

*/

int receiverhasdata instructure) I

Machine *instructure: /* includes

char *instructure.segment a pointer to the shared segment */

if(*((long *)instructure->segment + VRECEIVEROFFSET) > 0)

return(TRUE);

el se

return(FALSE):

/* the following routine tests the first 4 bytes of the sender

segment to see if they are non-zero.
*/

int sender has data(segment)

char *.segment: /* pointer to the shared segment */

if(*((Iong *)segment + EN'EROFFSET) > 0)

return(TRUE);

else.

return(FALSE):

II

124

%

_.. .. .,. # . , ...-.€ , -e -. -" .--. '- .' . ." . -.r -. " .."""- ." , """. ...",- .". -- .- .- ,~j -q,,/,'I '



support.c

/* the following routine tests the first 4 bytes of the receiver
segment to see if they are less than zero.

int receiver should die(segment) i

char *segment: /* pointer to the shared segment */

IA

if(*((long *)segment + VRECEIVEROFFSET) < 0)

return(TRUE);

else

return(FALSE):
Ip

/* the following routine tests the first 4 bytes of the sender
segment to see if they are less than zero.*/

int sendershould_die(segment)

char *segment; /* pointer to the shared segment */

if(*((long *)segment + WSEM'DEROFFSET) < 0)

return(TRUE) ;

else

II
return(FALSE) ;

1P

12

125



support.c

/* the following routine tests the first 4 bytes of the receiver
segment to see if they are non-zero.

int receiver is free(segment)

char *segment; /* pointer to the shared segment */

if(*((long *)segment + RECEIVEROFFSET) == 0)

return(TRUE);

else

return(FALSE);

/* the following routine tests the first 4 bytes of the sender
segment to see if they are non-zero.
it uses an input structure since called by main program

int sender is free(instructure)
@

Machine *instructure. /* includes

char *instructure.segment a pointer to the shared segment */

if(*((long *)instructure->segment + "MENDEROFFSET) == 0)

return(TRUE);

II

'%

elsel

.p

%%

'S.



support.c

/* the following routine reads on the input socket into the receiver segment.*/ %

read_ socket _ into segment(socketsegment)

int socket: /* a socket descriptor */

char *segment: /* a ptr to the shared segment */

long nbytes: /* the number of bytes read in */

char temp[LARGESTREAD];

P

/* read the data into a temporary array to avoid segment protection
violation since the socket does not share with the shared memory
segment.

nbytes = read(socket,tempLARGESTREAD);

if(nbytes <= 0)

/* the following routine calls are cornmented out for the following
reason:

nbytes <= 0 means that the socket has been broken.

This routine is called by the receiver process so the only
intelligent thing to do is to terminate the receiver process.
i.e. call exit...

perror("read");
printf("READ_SOXKET_ INTOSECNINt: number of bytes read = %d\n",nbytes):

*/

shutdown( socket, 2 );
close( socket );
exit(I);

/* copy the data into the shared segment /
memcpy((segment + RECEIVEROFFSET + 4),temp,nbytes);

/* set the number of bytes in the shared segment */
*((long *)segment + XW.ECEIVEROFFSET) = nbytes;

127

",.1



N

support.c

/* the following routine writes the data from the sender side 4

of the shared segment to the socket */

writesocketfromsegment(socket.segment)

int socket; /* socket descriptor */

char *segment; /* pointer to the shared segment */

long nbytes: /* the number of bytes to write */

char temp[LARGESTREAD]; A
/* copy the data into a temporary array to avoid segment protection

violation since !h. socket does not share with the shared memory
s egmen t.

*/
memcpy(temp,((char *)segment + SENMEROFFSET + 4),

*((long *)segment + VvENDOFFSET));

/* write the data to the socket */
nbytes = write(socket,temp, *((long *)segment + ASENDEROFFSET));

if(nbytes <= 0 11 nbytes != *((long *)segment + ASENMEROFFSET))
{V

/*

This error indicates the socket is broken. Just exit the
sender process.

perror("write");
printf("VRITESOCKETFRCSEME/T: number of bytes written = %d\n",nbytes):
printf("Number of bytes in shared segment --%d\n",*((long *)segment + WSENDEROFFSET)):*/
shutdown( socket, 2 );
close( socket ),
exit(l);

/* free the sender segment */
free_sender(segment);

a"

12

Nt,



support.c

/* The following routine receives on the input datagram socket.
If the message matches the mname and portnum it is copied into the it
receiver area of the shared memory segment.
0 is returned if the message does not match mname and portnum.
the number of bytes read is returned if it does match. */

int broadcastinto_segment(socketsegmentmnameportnum)

int socket: /* a socket descriptor */

char *segment; /* a ptr to the shared segment */

char mname[]: /* machine name of broadcaster */

long portnum; /* port number of broadcaster */

long nbytes; /* the number of bytes read in /

char temp[LARGESTREAD];

int flags = 0: /* flags = 0 indicates none set */

struct sockaddr_in who: /* Internet structure for message sender address *

int wholen: /* length of received address struct who */

struct hostent *broadcaster; /* pointer to structure with info on
broadcaster */

static long broadcast-address; /* address of broadcaster *f

static short broadcastport: /* port of broadcaster */

static Boolean firsttime = TRUE:

/* read the data into a temporary array to avoid segment protection
violation since the socket does not share with the shared memory
segment. This also allows checking for match with desired broadcaster.

*/
nbytes = recvfrom( socket, temp, LARGESTREAD, flags,

(struct sockaddr *)&who, &wholen );

if(nbytes <= 0)

perror("recvfrom:");

else

if( firsttime )

/* determine desired broadcaster address and port */

broadcastport = htons((short)portnum);

broadcaster = (struct hostent *)gethostbyname( mname );

bcopy( broadcaster->h_addr, (char *)&broadcastaddress,
broadcaster->h-length );

ift (broadcast _address == who.sin addr.s addr) &&
(broadcast-port ==who.sin port) %

129



support.c

/* copy the data into the shared segment *
memcpy((segment + RECEIVEROFFSET + 4Ltemp~nbytes):

/* set the number of bytesi h hrdsget~
*((long *)segment + IsEEVEROFFSET) = nbytes;

else

nbytes = 0:,
/* Set nbytes to 0 so return of function indicates no match ~

return( nbytes )

N

130~



support.c

/* the following routine sends the data from the sender side
of the shared segment to the socket for broadcast */

send_ socket-from segment(socketportnumsegment)

int socket; /* socket descriptor */

long portnum; /* port number of broadcaster */

char *segment; /* pointer to the shared segment */

long nbytes: /* the number of bytes to write */

char temp[LARGESTREAD];

short broadcasterport:

static Boolean firsttime = TRUE:

static struct sockaddr-in network = AFINET ); /* structure for broadcast
address */

if( firsttime )

broadcasterport = IPPORTRESERVED + portnum;
/* Set up broadcasting address structure */
network.sin-family = AF_ INET;
network.sin addr.s addr = htonI(INAC)_BROADCAST);
network.sinport = htons(broadcasterport);
firsttime = FALSE;

/* copy the data into a temporary array to avoid segment protection
violation since the socket does not share with the shared memory
segment.

*/
memcpy(temp.((char *)segment + SENDEROFFSET + 4),

*((long *)segment + NVS EEROFFSET));

/* broadcast the data through the socket */
nbytes = sendto( socket, temp, *((long *)segment +SEDEROFFSET), 0,

(struct sockaddr *)&network, sizeof(network) ) .

if(nbytes <= 0 I nbytes != *((long *)segment + VVSEEROFFSET))

/*
This error indicates the socket is broken. Just exit the
sender process.

perror("write"):
printf('"VsRITE_SOCKET_FRCvISEvE'NT: number of bytes written = 0d\n",nbytes):
printf("Number of bytes in shared segment = cd\n"* long *)segment + WSENDEROFFSET):
shutdown( socket, 2 ):
close( socket ):
exit(l):

f* free the sender segment %
free tsender(ssegment /

131

%--



support.c

/* the following routine deletes the sender by writing
a negative byte count into the shared segment
and then waking up the sender.

*/

kill _ sender(segment.sendsem)

char *segment: /* ptr to the segment */

int sendsem: /* semaphore to the sender */

/* write a negative number into the byte count field. */
*((long *)segment + vSEMEROFFSET) = -1;

/* at this point, we should send a wakeup to the sender program.
the sender will read the bad byte count and exit.! */

V( sendsem).

/* the following routine deletes the receiver by writing
a negative byte count into the shared segment
and then waking up the receiver.

*/

kill_receiver(segrnentreceivesem)

char *segment; /* ptr to the segment */

int receivesem; /* semaphore to the receiver */

/* we do not wait uatil the receiver segment is free here
as the process that calls this routine should already
have read the last piece of data.

*/

/* write a negative number into the byte count field. */
*((long *)segment + VRECEIVEROFFSET) = -1;

/* at this point, we should send a wakeup to the receiver program.
the receiver will read the bad byte count and exit.

V( receivesem);

132



APPENDIX B - TI EXPLORER MODULE DESCRIPTIONS

All functions, methods, and flavor are contained in file irisflavor.lisp.

1. Calling Protocols

The module contains functions, methods, and a flavor that are intended for the

application's use. It also contains a macro and functions that are used internally. The

parameters for externally accessible functions and methods are described below.

a. iris

(defun iris (x) ;where x is number of iris machine desired

b. start-iris

(defmethod (conversation-with-iris :start-iris)
()

c. get-iris

(defnethod (conversation-with-iris :get-iris)
()

d. put-iris

(defnethod (conversation-with-iris :put-iris)
(object)

(let* ((buffer (cond
((equal (type-of object) 'bignum) (convert-number-to-string object))

((equal (type-of object) 'fixuum) (convert-number-to-string object))
((equal (type-of object) 'float) (convert-number-to-string object))
((equal (type-of object) 'string) object)
(t "error") ))

e. stop-iris

(defmethod (conversation-with-iris :stop-iris)
()

f. reuse-iris

(defmethod (conversation-with-iris :reuse-iris)( ) -p.

133

V V W



Explorer irisflavor.Iisp

2. Code and Description

(defrnacro Ioopfor (var init test expi &optional exp2 exp3 exp4 expS)
(P)~ I g

setq .var .init
tag
*e-Kp1
exp2
exp3
* exp4
* exp5
(setq *var (1+ ,var))
(if (= var *test) (return t) (go tag))

(defun convert-numnber-to-string (n)
(princ-to-string n) )

(defun convert-string-to-integer (str &optional (radix 10))
(do ((j 0 (+ j 1))

(n 0 (+ (* n radix) (digit-char-p (char str j) radix)))
((= j (length str)) n))

(defun find-period-index (str)
(catch 'exit

N (dot imes (x (length str) nit)
(if (equal (char str x) (char ""0))
(throw 'exit x) ))))

(defun get-leftside-of-real (str &optional (radix 10))
(do ( ( j 0 (1+j )

(n 0 (-. ( n radix) (digit-char-p (char str j) radix)))
((or (null (digit-char-p (char str j ) radix)) (= j (length str)) n)

(defun get-rightside-of-real (str &optional (radix 10))
(do ((index (1+ (find-period-index str)) (1i- index))

(factor 0.10 (*factor 0.10))
(n 0.0 (i- n (*factor (digit-char-p (char str index) radix))))

((= index (length str)) n)))

(defun convert-string-to-real (str &optional (radix 10))
(+ (float (get-leftside-of-real str radix)) (get-rightside-of-real str radix))

(defvar *tcp-handlerl* (send ip::*tcp-handier* :get-port))
(defvar *tcp-handler2* (send ip::*tcp-handler* :get-port))

(defvar *irisl-portl* 1027) this is the Rend port
(defvar *irisl-port2* 1026) this is the receive port

(defvar *irist-address* 3221866502)
(defvar *iris2-address* 3221866504)
(defvar *iris3-address* 3221866505)

4s(defvar *dest..address* nil) the tcp-ip or internet address
look in network configuration

A ~~~(defud iri (xl (eq*etades iiIades

(od((equal x 1) (setq *dest-address* *irisl-addreqq*))
((eq al 3)(se q *d st-ddr ss* *iri3-a dre s*S

(t (setq *dest-address* *iris2..address*)))

(defflavor conversation-with-iris ((talking-port-numiber 5 irist-port 1*)
(Ii aten ing -port -number * i r is-port 2*)
(talking-port *tcp-handlerl5 )
(listening-port *tcpitandler2*)

(destination *dest-address*)

134

-- ~~~~~~~~ % %-- % N--,- N *,~~~7**** *. ~ -- ~* .



Explorer irisflavor.lisp

()
:gettable-instance-variables

:settable-instance-variables
initable-instance-variables

(defmethod (conversation-with-iris :start-iris)
()

(progn
(send talking-port :open

:active tcp will begin the procedure to establish
connection (default vs :passive)

talking-port-number port number of destination host
destination machine name or address if blank and

in *passive mode local machine waits for
connection

30 ) set max seconds before read request times out
(send listening-port :open

:active :passive
listening-port-number
destination
30 )

"'A conversation with the iris machine has been established"))

(defmethod (conversation-with-iris :reuse-iris)

S(s()
(setq *tcp-handlerl* (send ip::*tcp-handler* :get-port)*tphandler2* (send ip::*tcp-handler* :get-port)

taling-port *tcp-handlerl*
listening-port *tcp-handlr2* ) )

(defmethod (conversation-with-iris :get-iris)
()

(let* ((typebuffer "

(lengthbuffer "

(buffer .
(buffer-length 1)

(progn
(send listening-port :receive

typebuffer
buffer-length
30
:wait )

(send listening-port :receive
lengthbuffer
4
30
:wait )

(setq buffer-length (convert-string-to-integer lengthbuffer))
(setq buffer (make-string buffer-length :initial-element (character 32)))
(send listening-port :receive

buffer
buffer-length
30
:wait )

(cond ((equal typebuffer "I") (convert-string-to-integer buffer))
((equal typebuffer "R") (convert-string-to-real buffer))

((equal typebuffer "C") buffer)
(t nil) )

(defmethod (conversation-with-iris :put-iris)
(object)

(let* ((buffer (cond
((equal (type-of object) 'bignum) (convert-number-to-string object))

((equal (type-of object) 'fixnum) (convert-number-to-string object))
((equal (type-of object) 'float) (convert-number-to-string object))
((equal (type-of object) 'string) object)
(t "error") ))

(buffer-length (length buffer))

135

- CIo r or



Explorer irisflavor.lisp

(typebuffer (cond ((equal (type-of object) 'bi gnum) "I")
((equal (type-of object) 'fixnum) "1')

((equal (type-of object) 'float) "R")
((equal (type-of object) 'string) "C")
(t "C") ))

(lengthbuffer (convert -number- to- st ring buffer-length))
(*loopvariable* 0)

(progn
(send talking-port :send %

typebuffer

nil
nil )

(if (= (length lengthbuffer) 4)
(send talking-port :send

lengthbuffer
4
nilnil )

(progn
(loopfor *loopvariable* (length lengthbuffer) 4

(send talking-port :send "0" 1 nil ril))
(send talking-port :send lengthbuffer (length lengthbuffer) nil nil) ) )

(send talking-port :send
buffer
buffer- length
t

nil ) ) ) )

(defmethod (conversation-with-iris :stop-iris)

(progn (send talking-port :close) (send listening-port :close))

136

"€'.2. " .'2'2 '." .. ..2"r. 2 . /2 2-. . .. . - . 2-2 : . .- .2- . -.. . . . . :. ' ' 2 " 
" '

.1
.
'



APPENDIX C - SYMBOLICS MODULE DESCRIPTIONS %

All functions, methods, and flavor are contained in file irisflavor.lisp.

1. Calling Protocols

The module contains functions, methods, and a flavor that are intended for the

application's use. It also contains a macro and functions that are used internally. The

parameters for externally accessible functions and methods are describcd below.

a. select-host
(defun select-host (host-name)

b. start-iris

(defmethod (:start-iris conversation-with-iris)

c. get-iris

(defmethod (:get-iris conversation-with-iris)
(),,

d. put-iris

(defmethod (:put-iris conversation-with-iris)
(object)

(let* ((buffer (cond
((equal (type-of object) 'bignum) (convert-number-to-string object))

((equal (type-of object) 'fixnum) (convert-number-to-string object))
((equal (type-of object) 'single-float) (convert-number-to-string object))
((equal (type-of object) string) object)
(t "error") ))

e. stop-iris

(defmethod (:stop-iris conversation-with-iris)()

f. reuse-iris

(defmethod (:reuse-iris conversation-with-iris)
()

137%



IV

Symbolics irisflavor.Iisp

2. Code and Description

Mode: LISP: Syntax: Conmmon-lIisp: Package: USER

handy macro to have in the send message farthur down

(defniacro loopfor (var init test expi &optional exp2 exp3 exp4 expS)

*(prog ( )
( setq .var .init
tag

exp I

exp2
exp 3

eXp4

eXp5

(setq var (1+ var)) t g a)

(def(n convertt-number-nto-stringa(n)

(princ-to-string n) )

(defun convert-string-to-integer (str &optional (radix 10))
(do ((j 0 (+ j 1))

(n 0 (+ (* n radix) (digit-char-p (char str j) radix)))
((= j (length str)) n) )

(defun find-period-index (sti)
(catch *exit

(dot imes (x (length str) nil)
( if (equal (char str x) (char ""0))
(throw 'exit x))

(defun get-leftside-of-real (str &optional (radix 10))
(do ((j 0 (1+ j))

(n 0 (+ (* n radix) (digit-char-p (char str j) radix)))
((or (null (digit-char-p (char str j) radix)) (= j (length str)) n)

(defun get-rightside-of-real (str &optional (radix 10))
(do ((index (1+ (find-period-index str)) (1+ index))

(factor 0. 10 (*factor 0.10))
(n 0.0 (+ n (*factor (digit-char-p (char str index) radix))))

((= index (length str)) n)))

(defun convert-string-to-real (str R-optional (radix 10))
(+ (float (get-leftside-of-real szr radix)) (get-rightside-of-real str radix))

(d f a i i -o t * 127,h s i h e d p r

(defvar *iris-portl* 1027) :this is the sendiv port
(defvar *irisapot2*-prt 1026) this is the recaei port

(defvar *local-listen.port* 1501) :this is the local receive port

(deffl avor conversation-with-iris ((talking-port -iumber *i ri s-port 1*)
(listening-port-number *iris-port2*l

local -talk-port -number *local -t alk-port*)
(local-listen-port-number *local- listen-port*)

(talking-streamn)
(listening-stream)

(destination-host-object)

initable-instance-variables

-p ~~~de fine ihod ) in it -destini t ion-hasti conversation-withi-iris)I

setf deqtination-host-object (net:parse-hiost name-of-host))

138



Symbolics irisflavor.lisp

(defmethod (:start-iris conversation-with-iris)
()

(setf talking-stream
(tcp:open-tcp-steeam destination-host-object

talking-port-number
local-talk-port-number

(setf listening-stream
(tcp:open-tcp-stream destination-host-object

listening-port-number
local-listen-port-number

"A conversation with the iris machine has been established"

(defmethod (:reuse-iris conversation-with-iris)

(defun read-string (stream num-chars)
(let ((out-string -'))

(dotimes (i num-chars)
(setf out-string (string-append out-string (read-char stream))))

out-string ) )

(defmethod (:get-iris conversation-with-iris)
()

(let* ((typebuffer .
(lengthbnffer "

(buffer
(buffer-length 1) )

(progn
(setf typebuffer

(read-string listening-stream 1)
(setf lengthbuffer

(read-string listening-stream 4))
(setf buffer-length

(convert-string-to-integer lengthbuffer) )
(setf buffer

(read-string listening-stream buffer-length)

(cond ((equal typebuffer "I") (convert-string-to-integer buffer))
((equal typebuffer "R") (convert-string-to-real buffer))
((equal typebuffer "C") buffer)
t nil) ) ) )

(defvar *step-var* 0)

(defun my-write-string(string stream)
(let* ((num-chars (length string))) P"

(dotimes (i num-chars)
(write-char (aref string i) stream) )))

(defmethod (:put-iris conversation-with-iris)
(object)

(let* ((buffer (cond
((equal (type-of object) 'bignum) (convert-number-to-string object)) N

((equal (type-of object) 'fixnum) (convert-number-to-string object))
((equal (type-of object) 'single-float) (convert-number-to-string object))
((equal (type-of object) 'string) object)
(t "error") )

(buffer-length (length buffer))

(typebuffer (cond ((equal (type-of object) 'bignum) "I")
((equal (type-of object) 'fixnum) "I")
((equal (type-of object) 'singlh -float "R")
((equal (type-of object) 'string) "C") I

(lengthbuffer (convert-number-to-string buffer-length)) )

139



Symbolics irisflavor.Iisp

(progn
(my-write-string typebuffer talking-stream)
(send talking-stream :force-output)

(if (= (length lengthbuffer) 4)
(write-string lengthbuffer talking-stream)
(progn

(loopfor *step..var* (length lengthbuffer) 4
(write-string "0" talking-stream)

(my-write-string lengthbuffer talking-stream))
(send talking-stream :forz e-output)
(nmy-write-string buffer talk..ig-stream)
(send talking-stream :force-output)

(defmetbod (:stop-iris conversation-with-iris)

(progn (send talking-stream :close)
(send listening-strean :close)

(defun select-host (host-name)
(send talk :init-destination-host host-name)

L

W,

5%

140.



APPENDIX A - TEST AND UTILITY PROGRAMS

1. gprog.c

a. Calling Protocols

This is a test program for the direct connect protocol. By command line

argument, another machine to receive direct connect messages from can be specified.

The default is to receive messages from iris2. It must be run in conjunction with

gprog2.c to function properly, as the port assignments are hardcoded. Since it is the

server program, it must be started before gprog2.c.

b. Code and Description
/* this is file gprog.c

It is a sample top level program for the asynchronous reading
and writing of sockets via shared memory and two other processes.

This program spawns off the required processes.

This program uses structure type Machine declared in file shared.h.

This is the SERVER side program and runs first!!!.

*/

#include "shared.h"
#include "gl.h"
#include "device.h"

main(argc ,argv)

int argc; /* argument count */
char *argvl; /* pointers to the passed in arguments */

Machine remotemachine; /* structure for remote machine */

char othermachine[50]; /* name of other machine */

char mybuffer[LARGESTREAD]; /* received data */

char outgoing[IARGESTREAD]; /* outgoing message's buffer */

int mybufferl[LARGESTREAD/INTEGERSIZE]; /* received integer data */

int outgoingl[LARGESTREAD/INTEGERSIZE]; /* outgoing integer message's buffer */

float mybuffer2[LARGESTR.EAD/FLOATSIZE]: /* received float data */

float outgoing2[LARGESTREAD/FLOATSIZE]: /* outgoing float message buffer *%

long noutgoing; I* size of the outgoing message */

141

% % %



gprog.c
char temp[1O]; /* temp array used to make outgoing message

long count = 0: /* message counter */

char received-type();

chiar t ype..rece ived;

int elementsreceived;

long i; /* temp loop variable */

long j = 0; /* variable to control message sending */

/* pull out the string from the argument list */
if(argc > 2)

printf("GPROG: incorrect argument count! use gprog <alias>\n");
exi t ()

/* pull out the name of the other string, if it exists */
if( argc== 2

strcpy( other-machine, "npscs-" );
strcat( other_machine, argv[lJ );

else

strcpy( othermachine, "npscs-irisl" );

/* create a path to a particular machine (irisl default) */
/* the first argument is the key for the shared memory segment.

the second argument is the name of the machine to connect to.
the third argument is the sending port number for the socket to use.
the fourth argument is the receiving port number for the socket to use.
the fifth argument indicates whether the processes should

act as a server or a client.
the sixth argument is the returned pointer to the structure

remotemachine.
it includes the pointer to the shared memory segment,
the system generated shared memory id, the sendsem id,
and the returned receivesem id.

the seventh argument is the amount of freespace desired for dynamic
memory allocation during execution of the program.

dynanicmachinepath(l,othermachine,l,2,"server",&remotemachine,2000000):

/* the loop for polling the shared segment */
whi le(TRUE)

/* make an outgoing message *
strcpy(outgoing,"GPROG ORIGINAIEDMESSAGE: ");

count = count 1;

outgoingl[0] count;

noutgoing = strlen(outgoing);

outgoing2[0] = count;

/* is there data in the shared segment? *N
i f rece ive r _h asda t a(&remot emachine ) ) 

type-received = received-type(&remoteiachine);

142

%



gprog.c
printf("The messaqe received by GPRCG is of type %c \n".

typereceived)

switch (type_received) S

case CHARACTERARRAYTYPE: 
:%

elements received = numberreceived(&remotemachine):

printf("The message received by GPROG is %d elements long!\n",
elements-received);

read characters(&remotemachine, mybuffer, elementsreceived):
break;

case INTEGERTYPE:
read integer(&remotemachine,mybuffer);
break;

case FLOAT_TYPE:
readfloat(&remotemachine,mybuffer2);
break;

/* at this point in the program, process the received data...
printf("GPROG has received the following data:\n");

switch (type received)

case CHARACTERARRAYTYPE:
for(i=O; i < elements_received; i+=1)

print f("%c" ,mybuffer[i ]);

break;

case INTEGER_TYPE:
printf( "%d" ,mybufferl[O] ) ;
break;

case FLOAT-TYPE:

print f('%f" ,mybuffer2[0]);
break;

print fC\n");

/* at this point, we would look at our system and see if we needed
to send data. Instead, I will check if the sender is free.
If the sender is free, I will send one of three messages */

if(sender is free(&remotemachine))

if((j % 3) == 0)
write_characters(&remotemachine,outgoing.noutgoing);

/* wait until message sent before attempting to send another */
while( !sender is free(&remotemachine) ) /* do nothing /.

ift(j % 3) == 1) .
write_integer(&renotemachine,outgoingl): 4*,

/* wait until message sent before attempting to ;end another */
while( !sender is free(&remotemachine) ) /* do nothing / :%

if((j % 3) == 2) ,
writ e_float(&remotemachine.outgoing2)

else S

143 II

'is'

# 
p

. =c - - - " *. 1' - .' .J4 - 4 -.. .... . " "



gprog.c

/* assume socket connection broken */
printf("Sender wasn't free! Terminating...\n")

break-

/" endif while TRUE */

/* get rid of the path to the other machine.. .*/
detetemachinepath(&remotemachine);

, ,

144 "

%_



2. gprog2.c

a. Calling Protocols

This is a test program for the direct connect protocol. By cormnand line

argument, another machine to receive direct connect messages from can be specified.

The default is to receive messages from irisl. It must be run in conjunction with

gprog.c to function properly, as the port assignments are hardcoded. Since it is the

client program, it be started after gprog.c is ready for it.

b. Code and Description
/* this is file gprog2.c

It is a sample top level graphics program for the asynchronous reading
and writing of sockets via shared memory and two other processes.

This program spawns off the required piocesses.

This program uses structure type Machine declared in file shared.h.

This is the CLIENT side program and runs second!!!.

*/

#include "shared.h"
#define TRUE I

main(argc ,argv) 
"

int argc; /* argument count */
char *argv[]: /* pointers to the passed in arguments *"

Machine remotemachine; /* structure for remote machine */

char othermachine[50]; /* name of other machine */

char mybuffer[LARGESTREAD]; 
/* received data /

char outgoing[LARGESTREAD]; /* outgoing message's buffer */

int mybufferl[LARGESTREAD/INTEGERSIZE]: /* received integer data */

int outgoingI[LARGESTREAD/INTEGERSIZE]: /* outgoing integer message's buffer */

float mybuffer2[LARGESTREAD/FLOAT SIZE]; /* received float data */

float outgoing2[LARGESTREAD/FLOATSIZE]: /* outgoing float message bufter */

long noutgoing: /* size of the outgoing message */

char temp[lO1: /* temp array used to make outgoing message 5/

long count = 0: /* message counter */

char receivedtype 
:

S

t45
Ni



gprog2.c

char type-received;

int elementsreceived;

long i; /* temp loop variable */

long j = 0: /* variable to control message sending */

/* pull out the string from the argument list */
if(argc > 2)

printf("GPRCG2: incorrect argument count! use gprog2 <alias>\n"):
exit(1):

/* pull out the name of the other string, if it exists 'SI
if( argc == 2

strcpy( other-machine, "npscs-" ):
strcat( other-machine, argvll] );

else
strcpy( othermachine, "npscs iris2" ); k.

/* create a path to a particular machine (iris2 default) */
/* the first argument is the key for the shared memory segment.

the second argument is the name of the machine to connect to.
the third argument is the sending port number for the socket to use.
the fourth argument is the receiving port number for the socket to use.
the fifth argument indicates whether the processes should
act as a server or a client.
the sixth argument is the returned pointer to the structure

remotemachine.
it includes the pointer to the shared memory segment,
the system generated shared memory id, the sendsem id,
and the returned receivesem id.

machinepath(l,othermachine,2,1,"client".&remotemachine);

/* the display loop and loop for polling the shared segment */
while(TRUE)

/* make an outgoing message 'S
strcpy(outgoing,"IRISl ORIGINATEDNESAGE: ');

count = count + 1;

outgoingl[0] = count;

noutgoing = strlen(outgoing):

outgoing2[0] = count;

/* is there data in the shared segment? */
if(receiver_hasdata(&remotemachine))

type-received = receivedtype(&remotemachine);

printf("The message received by IRISI is of type %c \n",
type received):

switch (typereceived)

case C14ARACTERARRAYTYPE:
elementsreceived = numberreceived(&remotemachine);

146



gprog2.c

printf("The message received by IRISI is %d elements long!\n".
elements-received):

readcharacters(&remotemachine ,mybuffe r,
elements _received):

break.

case INTEGER-TYPE:
read _ integer(&remotemachine,mybufferl)
break:

case FLOAT-TYPE:
read float(&remotemachinemybuffer2);
break:

/* at this point in the program, process the received data...
printf("IRISI has received the following data:\n");

switch (typereceived)

case CHARACTERARRAY_TYPE:
for(i=O; i < elements-received; i+=I)

print f("%c",mybitffer[i]);

break;

case INTEGER-TYPE:
printf("%d" ,mybufferI[0] )

break;

case FLOAT-TYPE:
print f("%f",mybuffer2[0j );

break;

print f( \n") ;

/* at this point, we would look at our system and see if we needed
to send data. Instead, I will check if the sender is free.
If the sender is free. I will send one of three messages */

if(sender is free(&remotemachine))

if((j % 3) == 0)
writecharacters(&remotemachine ,outgoing.noutgoing);

/* wait until message sent before attempting to send another */
while( !sender is free(&remotemachine) ) /* do nothing */ printf("2"):

if((j % 3) == 1)
writ e_integer(&reotemachine,outgoingl);

/* wait until message sent before attempting to send another */
while( !sender is free(&remotemachine) ) /* do nothing */ printf("3"):

if((j % 3) == 2)
writ e f oat (&remo t emachine , ou t going2)

++j ;

else asm okt-

/* assume socket connection broken /
printf("Sender wasn't free! Terninating... \n"):

break;

II

147

A

PL Aa



gprog2.c

/* at this point, you can do the rest of the display loop */

/* endif while TRUE */

/* get rid of the path to the other machine...
deletemachinepath(&remotemachine);

V

7,-

"14

, ..



3. prog.c

a. Calling Protocols

This is a test program for the broadcast protocol. By command line argument,

another machine to receive broadcast messages from can be specified. The default is to

receive messages from iris2. It must be run in conjunction with prog2.c to function

properly, as the port assignments are hardcoded.

b. Code and Description
/* this is file prog.c

It is a sample top level program for the asynchronous reading
and writing of sockets via shared memory and two other processes.

This program spawns off the required processes.

This program uses structure type Machine declared in file shared.h.

#include "shared.h"
#define TRUE I

main(argc .argv)

int argc; /* argument count *1
char *argv[]; /* pointers to the passed in arguments */ ,

Machine remotemachineI* first structure for remote machine/

Machine remotemachine2: /* second structure for remote machine */

char othermachine[50]; /* name of other machine */

char mybuffer[LARGESTREAD]; /* received data */

char outgoing[LARGESTREAD]; /* outgoing message's buffer */

int mybufferl[LARGESTREAD/INTEGERSIZE]; /* received integer data */

int outgoingI[LARGESTREAD/INTEGER_SIZE: /* outgoing integer message's buffer */

float mybuffer2[LARGESTREAD/FLOAT SIZE]; /* received float data */

float outgoing2[LARGESTREAD/FLOAT SIZE]; /* outgoing float message buffer */

long noutgoing: /* size of the outgoing message */

char temp(10] /* temp array used to make outgoing message */

long count = 0: /* message counter */

char receivedtype( I:

char type-received:

149 p,

'

~ a.2.... ~.k.' .4 X.



K

prog.c

int elementsreceived:

long i: /* temp loop variable */

long j = 0: /* variable to control message sending */

/* pull out the string from the argument list */
if(argc > 2)

printf("PROG: incorrect argument count! use prog <alias>\n"):
exit(l);

/* pull out the name of the other string, if it exists *]
if( argc ==2 )

strcpy( other-machine, argvnll] t

else

strcpy( other machine, "npscs-iris2" )

/* create a pair of paths to a particular machine (iris2 default) */
/* the first argument is the maximum number of channels to be created.

the second argument is the key for the shared memory segment.
the third argument is the name of the machinje to connect to.
the fourth argument is the sending port number for the socket to use.
the fifth argument is the receiving port number for the socket to use.
the sixth argument indicates whether the processes should
act as a receiver or a broadcaster.
the seventh argument is the returned pointer to the structure

remotemachinel or remotemachine2.
it includes the pointer to the shared memory segment.
the system generated shared memory id, the sendsem id,
and the returned receivesem id.*/

dynamicmachinepaths(2,1,other machine,2,1,"receive",&remotemachinel);

sleep(5): /* to let both sides set up receiving channels first */

dynamicmachinepaths(2,1.other-machine,4,3,"broadcast",&remotemachine2):

/* the loop for polling the shared segment limited to avoid send buffer
overflow */

while(TRUE)

/* make an outgoing message */
strcpy(outgoing,"PROG ORIGINATED MESSAGE: ");

count = count + I;

outgoingl[0] = count;

noutgoing = strlen(outgoing);

outgoing2[0] = count;

/* is there data in the shared segment'? *

if receiver _has data(&remotemachinel))

typereceived = received-type(&remotemachinel):

printf("The message received by PROG is of type %c \n". N
type received):

-witch (typereceived)

150 1

% %



prog.c

c as e C14ARACTERARRAYTYPE:
elementsreceived = numberreceived(&remotemachinelI): '

printf("The message received by PROG is %d elements long!\n".
elementsreceived) N

read_ cha racters(&remotemachinel .mybuffer,
elementsreceived);

break;,.

case INTEGERTYPE:
read_ integer(&remotemachinel ,mybufferl);
break;

case FLOATTYPE:
read float(&remotemachinel,mybuffer2);
break:

/* at this point in the program. process the received data...
printf("PROG has received the following data:\n");

switch (type-received)

case CHARACTER_ARRAY TYPE:
for(i=O; i < elementsreceived: i+=l)

printf("%c" ,mybuffer[i] );II

break;

case INTEGER-TYPE:
printf'"%d",mybufferl[0] );

break:

case FLOATTYPE:
printf("%f",mybuffer2[0]);

break:

printf("\n"):

/* at this point, we would look at our system and see if we needed
to send data. Instead, I will check if the sender is free.
If the sender is free, I will send one of three messages */

if(sender is free(&remot emachine2))

if((j % 3) == 0)
write _cliaracters(&remotemachine2,outgoing,noutgoing) ;

/0 wait until message sent before attempting to send another */
while( !sender_ is free(&remotemachine2) ) /* do nothing printf("2")*/

if((j % 3) == 1)
write_in teger(&remot emachiine2,outgoingl): I

/* wait until message sent before attempting to send another */
while( !sender is free(&remotemachine2) ) /* do nothing print f( "3" )*/

ittt. % 3) == 2)
write_float(&remotemachine2,outgoing2):

/* wait until message sent before continuing */
whi let !sender is free(&remotemachiiie2) ) /* do nothing printf("4"5 */

++j :

else

151

A -t .- I.- .. . .. .. - q* .



*. S - , .,- , , ,,, , ,. , . _ ,. i . ',,., - ;. -' , ",i," - . -

wp

prog.c

/* assume socket connection broken */
printft"Sender wasn't free!\n"):

break:

DV

/* at this point, you can do the rest of the display loop *%

/* endif while TRUE */

/* get rid of the path to the other machine... .

deletemachinepath (&remotemachine2);

152

%

A- . .X."N



4. prog2.c

a. Calling Protocols

This is a test program for the broadcast protocol. By command line argument.

another machine to receive broadcast messages from can be specified. The default is to

receive messages from irisl. It must be run in conjunction with prog.c to function

properly, as the port assignments are hardcoded.

b. Code and Description

/* this is file prog2.c

It is a sample top level program for the asynchronous reading
and writing of sockets via shared memory and two other processes.

This program spawns off the required processes.

This program uses structure type Machine declared in file shared.h.

*/

#include "shared.h"
#define TRUE I

main(argc, argv)

int argc; /* argument count *(
char *argv[]; /* pointers to the passed in arguments */

Ms

Machine remotemachinel; /* first structure for remote machine */

M~achine remotemachine2; /* second structure for remote machine *

char othermachine[50]; /* name of other machine */

char mybuffer[LARGESTREAD]; /* received data */

char outgoing[LARGESTREAD]: /* outgoing message's buffer %/

int mybufferl[LARGESTREAD/INTEGER SIZE]; /* received integer data */

int outgoingl[LARGESTREAD/INTEGERSIZE]; /* outgoing integer message's buffer */

float mybuffer2[LARGESTREAD/FLOATSIZE]: /* received float data /

float outgoing2[LARGESTREAD/FLOAT SIZE]; /* outgoing float message buffer */

long noutgoing; /* size of the outgoing message */

char temp[10 : /* temp array used to make outgcing message */

long count = 0: /* message counter */

char rceived _type( 1;

char type-received;

153

,d



prog2c

int elements-received;

long i: /* temp ioop variable */

long j = 0: /* variable to control message sending */

/* pull out the string from the argument list */
if(argc > 2)

printf("PROG2: incorrect argument count! use gprog2 <alias>\n");
exit(l);

/* pull out the name of the other string, if it exists */
if( argc == 2 )

strcpy( other-machine, argvll] );I
else

strcpy( other-machine, "npscs-iris2" );

/* create a path to a particular machine (iris2 default) */
/* the first argunent is the maximum number of channels to be created.

the second argument is the key for the shared memory segment.
the third argument is the name of the machine to connect to.
the fourth argument is the sending port number for the socket to use.
the fifth argument is the receiving port number for the socket to use.
the sixth argument indicates whether the processes should
act as a server or a client.
the seventh argument is the returned pointer to the structure

remotemachinel or remotemachine2.
it includes the pointer to the shared memory segment,
the system generated shared memory id, the sendsem id,
and the returned receivesem id.*/

dynamicmachinepaths(2,1,othermachtine,3,4,"receive",&remotemachine2);

sleep(5); /* to let both ends of the process get set up */

dynamicmachinepaths(2,1,other machine,l,2,"broadcast",&remotemachinel):

/* the display loop and loop for polling the shared segment */
while(TRUE)

/* make an outgoing message */
strcpy(outgoing,"PROG2 ORIGINATED MESSAGE: ");

count = count + 1;

outgoingl[0] = count;

noutgoing = strlen(outgoing):

outgoing2[0] = count;

/* is there data in the shared segment? */
if(receiverhasdata(&remotemachine2))

typereceived = received-type(&remotemachmine2):

printf("The message received by PROG2 is of type %c \n",

typereceived):

switch (type-received)

154

%' %".%- -1z



.
prog2.c

case CHARACTER ARRAYTYPE:
elementsreceived = nunberreceived(&renmotemachine2);

printf("The message received by PROG2 is %d elements long!\n".

elements-received):

readcharacters(&remotemachine2,mybuffer,
elementsreceived);

break;

case INTEGERTYPE:
read integer(&remotemachine2,mybufferl);
break;

case FLOATTYPE:
read float(&remotemachine2,mybuffer2);
break;

/* at this point in the program, process the received data...
printf("PROG2 has received the following data:\n");

switch (type-received)

case CIARACTERARRAY TYPE:
for(i=O; i < elementsreceived; i+=l)

printf("%c" .mybuffer[i ] ) ;

break;

case INTEGERTYPE:
print f("%d",mybufferl[O);

break;

case FLOAT_TYPE:
print f("%f",mybuffer2[0] );

break-,
}%

printf("\n"); %

/* at this point, we would look at our system and see if we needed
to send data. Instead, I will check if the sender is free.
If the sender is free, I will send one of three messages */

if(sender is free(&remotemachinel))

if((j % 3) == 0)
write _characters(&remotemachinel,outgoingnoutgoing) ;

/* wait until message sent before attempting to send another */
while( !sender _is _free(&remotemachinel) ) /* do nothing printf("2")*/

if((j % 3) == 1)
write _integer(&remotemachinel,outgoingl) ;

/* wait until message sent before attempting to send another */
while( !sender is free(&remotemachinel ) ) /* do nothing printfij3")*/

if((j % 3) == 2)
writ e_float(&remotemachinel .outgoing2) 

L

/* wait until message sent before continuing */

while( !sender is free(&remotemachinel) /* do nothing printf("4")*/

++j ;

else
lI

155

%I



prog2.c

/* assume socket connection broken *f
printf("Sender wasn't free! Terminating...\n"

break:
}I

/* endif while TRUE *1

/* get rid of the path to the other machine.. ../
deletemachinepath(&remotemachine2):
deletemachinepath(&remotemachinel);

1

.,,,

- ,

.V
1565



5. rmshare.c

a. Calling Protocols 
0 .

This is a stand-alone utility. It will remove all shared memory segments owned

by the user. By command line argument, selective segments can be removed.

b. Code and Description

* TITLE Inter-Computer Communication Package *

* MJDULE mshare.c *

* VERSION: 1.0 *

* DATE 25 February 1988 *

* AI-OR : Theodore H. Barrow *

* HISTORY: *

* VERSION: 1.0 *

* DATE : 25 February 1988 *

* AUTIOR : Theodore H. Barrow *

* DESC. : Removes shared memory segments identified on coninand line. *

* RECORD OF CHANGES *

*Version* Date * Author * Affected *Reqd*
Change Description * Modules *Vers*

4.*****i. 115

* * ***

157



rms hare

#include <errno.h>

#include <sys/sysmacros.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#inc lude <sys/shm. h>
#include <gI.h>

/* The following defines will have to be modified for different machines
but one of the underlying shared memory attachment mechanisms should
work for any system V implementation. /

#define IRIS4D I
#define IRIS3000 2
#ifdef FLAT
#define MACINE IRIS4D
#e Ise
#define MACHINE IRIS3000
#endif

extern int errno:

main( argc, argv )
int argc: /* argument count */
char *argv[]; /* pointers to the passed in arguments */

int first = 1:
int last = 1000:
keyt i :
int shmid;
keyt key;
static struct shmidds buffer;

/* set the number of shared memory keys to remove */
if(argc > 1)

for( i=first; i<argc; i++ )I
key = atoi( argvi] );

if( (shmid = shmget( key, 0, 0)) == -1I
if( errno != EIOENT

write error( shmid, key, errno ),

else

if( shmctl( shmid, IPC_RMID, &buffer ) == -1 )

write _ error( shmid, key, errno ):

else

write done( shmid, key ):
/* if( (shmid = shmget( i, 0, 0 f) == -1 ) */

/ } * for /

else

for( i=first; i<last; i++ )

if( (shmid = shinget( i, 0. 0)) == -1 )

if( errno = NENT )

writeerror( shmid, i, errno ):

158

J. X-



rmshare

else

if( shmnctl( shmid. IPC-RMID, &buffer ) =-1

wr ite _error( shmid, i , e r no)

elIs e
write _done( shmid, i )
1/* if( (shmid = shmnget( i, 0, 0 ) =-1 )~

/"' for ~

printf( '\nCompleted.\n" )

/* main()o

wr ite _error( shniid, key, error)
int shmid;
key-t key:
int error;

printf( '\nShared Memory ID 9d (key %od) caused errorcld"
shinid, key, error I

/* write crror()

write _done( shmid, key

key-t key;

print f( '\nShared Memory ID cld (key cld) removed., shmi d, key )

/* write done() *

0

159



-V V 'r W.-S-_ -- I - . a a U

6. testshare.c

a. Calling Protocols

This is a stand-alone utility. It will print current parameters for all active

shared memory segments. By command line argument, selective segments can be

printed.

b. Code and Description

* TITLE Inter-Computer Comnunication Package *

* NUIXJLE testshare.c. .
* VERSION: 1.0 *

* DATE 25 February 1988 *

* AUHOR Theodore H. Barrow *

* HISTORY: *

* VERSION: 1.0 *

* DATE 25 February 1988 *

* AUI~IV:. Theodore H. Barrow *

* DESC.: Determines which shmid values are used and what their * -a

* paramieters are. *

* ,*'.

- RECORD OF CHANGES .
*Version* Date * Author * * Affected *Reqd*
* * Change Description * Modules *Vers* ,

* * *t * * * *

* * *, * *

160

S



testshare.c

#include <errno.h>
#include <sys/sysmacros.h>
#incl ude <stdio. i>
#include <sys/types.h>
#include <sys/ipc.h>
#inc lude <sys/shm. h>
#include <gl.h>

/* The following defines will have to be modified for different machines
but one of the underlying shared memory attachment mechanisms should
work for any system V implementation. */

#define IRIS4D I
#define IRIS3000 2
#ifdef FLAT
#define MACHINE IRIS4D
#e I se
#define MACHINE IRIS3000
#endi f

extern int errno;

main( )

int first = 1;
Jnt last = 1000:
int i:
int shmi d:

for( i=first; i<last; i++ )

if( (shmid = shmget( i, 0, 0)) == -1

if( errno != 'UB'T ) ./,

writeerror( shmid, i, errno );

}p
else AU

if( write_struct( shmid ) == -1
write error( shmid, i, errno );
/ /* if( (shmid = slunget( i, 0, 0 )) == -1 ) *f

/* for */

printf( "\nCompleted.\n" ); •

f/* maino /

write error( shmid, key, error ) -,
int shmid:
keyt key:
int error;

printf( "\nShared Memory ID %d (key %d) caused error cod."
shmid, key, error ),

/* write error() */

struct shmid-ds *getstruct( shmid )
int slmid:

static struct shmid_ ds buffer;

if( shmctl( shmid, IPC_STAT, &buffer ) == -l )

161 %
%Wk

X'<,



'W - I, IVY.

testsharex %

return( (st ruct shmid _ds *)- I :

elIse
return( &buffer )

/ * get...struct( *

write _s truc t( slmid
int shmid:

struct shmjd-ds *buf;

if( (.ini )(buf = get_%truct( shmid )) -1)
return( (int)buf )

p r in tf( '\nShared Memory ID91%d has the following structure:" slimid )
printf( "\n shm-perm has the following structure:"1
p rin t f( "\n cuid is %d. ". buf->shmn.perm.cuid )
printf( "\n cgid is Ud.", buf->shm..perm~cgid )
print f( " \ 1 ujid is %d.'" buf->shn-.perrn.uid )
p r int f( "\n g id i s %od. " buf->shn.perm.gid )
p r in tf( "\n mode is %o. buf->shnm.perm.mode )
p r int f "\n s eq i s 96d. " buf->shm-perm.seq )
p r int f '\n key is %od. " buf->shns-pernikey )
prinlt( "\n shm..segsz is cld or %x.", buf->slumsegsz, buf->shmseg-.z )
printf( '\n shm-reg is a structure incompletely defined in region.h!" )

printf( "\n shm-lpid is Ud.", buf->sim_.jpid )
printf( "\n shm..cpid is Ud.", buf->shmncpid )
printf( "\n shm -nattch is cld.". buf->shmn-nattch )
printf( "\n slim-cnattch is Ud.", buf->shmn Tcnattch )
p r int( \n s im_ atime is %d." buf->shm atime )
pr in t f "\n s hin d time i s od." , bu f ->s hmdtime )
p r intf( '\n slim-ctirne is %d.", buf->shm_ segsz )

return( 0 )

/* wri te structo()~

162-



LIST OF REFERENCES

1. Zyda, Michael J., and others, "Flight Simulators for Under $100,000," IEEE
Computer Graphics & Applications, v. 8, no. 1, pp. 19-27, January 1988.

2. Birrell, Andrew D. and Nelson, Bruce Jay, "Implementing Remote Procedure
Calls," ACM Transactions on Computer Systems, v. 2, no. 1, pp. 39-59, February
1984.

3. Cheriton, David R., "The V Distributed System," Communications of the ACM,
v. 31, no. 3, pp. 314-333, March 1988.

J.
4. Hearn, Donald and Baker, M. Pauline, Computer Graphics, Prentice-Hall, Inc.,

Englewood Cliffs, New Jersey, 1986.

5. Magnenat-Thalmann, Nadia and Thalmann, Daniel, Computer Animation: Theory
and Practice, Computer Science Workbench, ed. by Tosiyasu L. Kunii, Springer-
Verlag, New York, 1985.

6. Shneiderman, Ben, Designing the User Interface.- Strategies for Effective Human-
Computer Interaction, pp. 179-223, Addison-Wesley Publishing Company, Menlo
Paik, California, 1987.

7. Dolezal, Michael J., A Simulation Study of a Speed Control System for Autonomous
On-Road Operation of Automotive Vehicles, M.S. Thesis, Naval Postgraduate
School, Monterey, California, June 1987.

8. Goodpasture, Richard Paul, A Computer Simulation Study of an Expert System for
Walking Machine Motion Planning, M.S. Thesis, Naval Postgraduate School,
Monterey, California, December 1987.

9. MacPherson, David L., A Computer Simulation Study of Rule-Based Control of an
Autonomous Underwater Vehicle, M.S. Thesis, Naval Postgraduate School,
Monterey, Califomia, June 1988.

10. Oliver, Michael R. and Stahl, David J., Interactive, Networked, Moving Platform
Simulators, M.S. Thesis, Naval Postgraduate School, Monterey, California,
December 1987.

11. McConkle, Corinne and Nelson, Andrew H, A Prototype Simulation System for
Combat Vehicle Coordination and Motion Visualization, M.S. Thesis, Naval
Postgraduate School, Monterey, California, June 1988 .

12. Nelson, Andrew H., McGhee, Robert B., and Zyda, Michael J., Investigation into m
the Use of Kyoto Common Lisp For Real-Time Computer Animation, to be
published, Naval Postgraduate School, Monterey, California.

13. Newell, D. P. Siewiorek, C. G. Bell, and A., Computer Structures: Principles and .
Examples, pp. 30)6-485, McGraw-Hill Book Company, San Francisco, 1982.'
E4. H am pes pp. , "C o muniMc aw Hig Booken , C o pany, San mFa nci c tos 

14. Hoare, C.A.R., "Communicating Sequential Processes,"~ Communications of the
ACM, v. 21, no. 8, pp. 666-677, August 1978 .

163



15. Hansen, Per Brinch, "Disributed Processes: A Concurrent Programming
Concept," Communications of the ACM, v. 21, no. 11, pp. 934-941, November
1978.

16. Lin, Kwei-Jay and Gannon, John D., "Atomic Remote Procedure Call," IEEE
Transactions on Software Engineering, v. 11, no. 10, pp. 1126-1135, October
1985.

17. Pountain, Dick, A Tutorial Introduction to Occam Programming, INMOS Limited,
March 12, 1986.

18. OSU-CISRC-TR-82-1, The Implementation of a Multi-Backend Database System
(MDBS): Part I - Software Engineering Strategies and Efforts Towards a
Prototype MDBS, by Kerr, D. S., and others , The Ohio State University,
Columbus, Ohio, January 1982.

19. NPS-52-82-008, The Implementation of a Multi-Backend Database System
(MDBS). Part 11 - The First Prototype MDBS and the Software Engineering
Experience, by He, X., and others , Naval Postgraduate School, Monterey,
California, July 1982.

20. NPS-52-83-003, The Implementation of a Multi-Backend Database System
(MDBS): Part III - The Message-Oriented Version with Concurrency Control and
Secondary-Memory-Based Directory Management, by Boyne, Richard D., and
others , Naval Postgraduate School, Monterey, California, March 1983.

21. Leffler, Samuel J., and others, "An Advanced 4.3BSD Interprocess
Communication Tutorial," in UNIX Programmer's Supplementary Documents
Volume 1, PS 1:8, Usenix Association, 1986.

22. Leffler, Samuel J., Fabry, Robert S., and Joy, William N., "A 4.2BSD Interprocess
Communication Primer," in Unix Programmer's Manual, Draft of August 23,
1986.

23. Tuthill, Bill, "IPC Facilities in 4.2BSD," Unix Review, v. 3, no. 4, pp. 82-87,
April 1985

24. AT&T, UNIX System V, Streams Programmer Guide, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1987.

25. Rochkind, Marc J., Advanced UNIX Programming, Prentice-Hall, Inc., Englewood
Cliffs, New Jersey, 1985 .

26. Bach, Maurice J., The Design of the Unix Operating System, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1986.

27. Texas Instruments Inc., Explorer TCP/IP User's Guide, 2537150-0001 Revision A,
pp. C-I-C-7, Austin, Texas, June 1987.

28. Texas Instruments Inc., Explorer TCP/IP User's Guide, 2537150-0001, Austin,
Texas, March 1986.

29. LANalyzer EX 500 Series Network Analyzer, Reference Manual, Publication No.
4200068-00 (Rev. B), Excelan, Inc., December 21, 1987.

164

It Kt



INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information System 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Director, Information Systems (OP-945) 1 N.

Office of the Chief of Naval Operations
Navy Department
Washington, DC 20350-2000

3. Commandant of the Marine Corps I.-%
Code TE 06
Headquarters, U.S. Marine Corps
Washington, DC 20360-0001

4. Library, Code 0142 2 0
Naval Postgraduate School
Monterey, California 93943-5002

5. Chairman, Code 52 2
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5000

6. Superintendent, Naval Postgraduate School "
Computer Technology Programs, Code 37
Monterey, California 93943-5000

7. Michael J. Zyda, Code 52Zk 2
Department of Computer Science p..

Naval Postgraduate School
Monterey, California 93943 5

8. Robert B. McGhee, Code 52Mz 1
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943

1'

165 7j'e



F,,,.NI, V VIf LW , V VA s,',.,_",

9. John M. Yurchak, Code 52Yu 2
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943 '

10. Marciano Code 52 1
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943

11. AI Wong Code 52
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943 0

12. Captain Andrew H. Nelson V
1006 Leahy Rd.
Monterey, California 93940

13. Major Theodore H. Barrow 5
Computer Science School
Training and Education Center
Marine Corps Combat Development Center
Quantico, VA 22134

16,

166



- M ~ ~ - -4 - - 4 .A.~ ~ .- ~

C

V.

V.P1J~ 'p.

I' r

9

S.

.d.

'N'S.'4

.4.

* a

N
4 S.
U

- - - - - - - - - - - -
.. ~.. -- -~

.4.-- .-..-.- ,.4* -- .4. -- -. 4- .4 4- .4,. *..

4.444 444444 4...-..

4.4.444 ~ *SP...]- -. 4..


